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FIP10601 – Text 14

Simple approximations from the single-particle Green’s function

We begin with the most important (formal) result of Text 13 [Eq. (39)], reproduced below.

G̃kσ(ωn) =
1

iωn − εk − Σkσ(ωn) + µ
· (1)

This is an exact expression of the Matsubara GF in terms of a self-energy that contains
all the interaction effects. This form can be immediately extended to the retarded and
advanced GF’s by analytic continuation, as already mentioned.

Based on this result, we will present some simple approximations, illustrating how one can
self-consistently renormalize the Green’s function and the electron-electron interaction.

Simplest approximation: 1st-order Σ

Keeping our restriction to the homogeneous limit, the only self-energy diagram that con-
tains a single interaction line is

Σ
(1)
kσ(ωn) = · (2)

One can improve on this approximation by considering a self-consistent solution in which
the GF that appears in the self-energy is renormalized, i.e., the original G0 is replaced by
the very G that is being evaluated! Within the diagrammatic technique, this implicitly
adds diagrams with self-energy parts inserted in this internal line, but we do not have to
explicitly evaluate these additional diagrams. Now the problem becomes self-consistent, as
G depends on Σ which in turn depends on G.

Let us make a more detailed analysis of this diagram, which is easier to do with its time
version instead of the frequency one. It should be noted that the interaction U is taken as
instantaneous. So, the perturbation expansion associates a single time to eachH1 operator,
and therefore to the four fermion operators that compose it. Hence, the internal GF has
zero time. This poses a problem, because the time order is not defined for zero time. It is
easier to interpret the diagram if we suppose a retarded Coulomb interaction, so that the
“scattering” of each electron occurs at slightly different times. Then we may redraw the
diagram (adding the external vertices) as shown below, with the time difference between
the internal vertices exaggerated for clarity (time is supposed to grow from left to right).

(3)
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Taking into account that an electron GF for propagation backwards in time (annihilation
before creation) corresponds to a hole propagation forward in time (as observed in Text
12), we can see the latter diagram as the following “sequence of events”:

1. an electron is inserted into the system at the initial time (left external vertex);

2. an electron-hole pair is spontaneously created, i.e., through a vacuum fluctuation
(left internal vertex);

3. the inserted electron annihilates the hole (right internal vertex);

4. the spontaneously created electron continues to propagate till the final time (right
external vertex).

An exchange has thus occurred between the inserted electron and one that leaves the
Fermi sea.

This approximation (first-order self-energy with renormalized internal GF) is actually the
Hartree-Fock approximation. Although we recognize a similarity in the analysis of the
exchange term with our evaluation of the Hartree-Fock (HF) ground-state energy (Text
11), the context is slightly different since here we are dealing with single-particle-excitation
energies.

From the definition of the Matsubara GF, Eq. (25) of Text 12, we can see that

g̃kσ(0−) = −〈T̂ ckσ(0−)c†kσ(0)〉 = 〈c†kσ(0)ckσ(0−)〉 = 〈nkσ〉 . (4)

Using this in the expression for the diagram in Eq. (2), it turns out that the HF self-energy
is real and independent of frequency. We then have a GF with the same form as the
zeroth-order one, but with the energies replaced by

εHF
kσ = εk −

∑
k′
U(k− k′)〈nk′σ〉 . (5)

These are just independent-electron energies modified by the interaction with the average
electron density. Note that the interaction effect involves only electrons in the same spin
state. The Hartree term (first-order tadpole diagram) would include opposite-spin contri-
butions, but it is null in the homogeneous limit. Equation (4) provides the self-consistency
condition, since g̃kσ(0−) is given by a sum of all G̃kσ(ωn).

Renormalization of the interaction

Just as we renormalized a G0 line, we can select an infinite series of diagrams that renor-
malizes the interaction line. It is easy to see that by adding to the first-order self-energy
diagram the second-order one with a loop [see Eq. (34) of Text 13] we obtain the first two
terms of the series below.

+ + + · · · (6)
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This series can be replaced by the diagram

, (7)

where the double line represents a renormalized interaction, given by

= + + + · · · (8)

The simple loop appearing in these diagrams can, in turn, be renormalized, both by renor-
malization of the G0 lines and by the inclusion of connections between them via interaction
lines (vertex renormalization). General renormalized loops of this kind are called polar-
ization parts. This denomination comes from the fact that these parts can be viewed as
the propagation of virtual electron-hole pairs, which can also be seen as vacuum polariza-
tions. Equation (8), with zeroth-order polarization parts only, is known as Random-Phase
Approximation (RPA).

Note that the renormalized interaction line depends on frequency. Since an end point of
an interaction line is a vertex where a G0 line ends and another one begins, the interaction
line carries a difference between two fermionic frequencies, which is a bosonic Matsubara
frequency. It is customary to use the notation νn for bosonic frequencies (βνn = 2nπ).
A bare interaction line, being instantaneous in time, is independent of frequency, mean-
ing that it carries any frequency. However, explicit frequency dependence appears after
insertion of polarization parts, i.e., the interaction ceases to be instantaneous.1

The renormalized interaction is usually denoted by W (q, νn). From Eq. (8), with Π(q, νn)
representing the polarization part, we have

W (q, νn) = U(q)− U(q)Π(q, νn)W (q, νn) , (9)

or

W (q, νn) =
U(q)

1 + U(q)Π(q, νn)
, (10)

After analytic continuation to real frequencies, we obtain

W (q, ω) =
U(q)

1 + U(q)Π(q, ω)
≡ U(q)

ε(q, ω)
, (11)

Therefore, the renormalized interaction is a screened Coulomb potential, and ε(q, ω) is
the dielectric constant.

1It is usual to interchange more or less freely references to imaginary time (τ) and real time (t), which is
justified by the possibility of analytic continuation between Matsubara frequencies and real ones.
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The simplest possible calculation of the dielectric constant uses the zeroth-order polar-
ization diagram. We can evaluate this diagram starting with the Matsubara formulation,
when we have

Π0(q, νn) = − 1

β

∑
kσ

∑
m

G̃0
kσ(ωm) G̃0

k+q,σ(ωm + νn) . (12)

Using the explicit form of the zeroth-order GF, and in the end making the analytic con-
tinuation iνn → ω + iη, we can show (EXERCISE) that

Π0(q, ω) = 2
∑
k

f(εk+q)− f(εk)

ω − (εk+q − εk) + iη
. (13)

Substituting this for Π(q, ω) in Eq. (11) results in the so-called Random Phase Approxi-
mation, in which the dielectric constant is given by

ε
RPA

(q, ω) = 1 + U(q)Π0(q, ω) . (14)

A further simplification, the Thomas-Fermi Approximation, takes the static limit (zero
frequency) of the renormalized potential, i.e., W

TF
(q) = U(q)/ε

RPA
(q, 0), additionally

evaluating Π0(q, 0) in the long-wavelength limit q → 0. A straightforward calculation
(EXERCISE) at T = 0 yields

W
TF

(q) =
4πκe2

V

1

q2 + q2
TF

, (15)

where

q
TF
≡
(

4mκe2kF
πh̄2

)1/2

(16)

is known as the Thomas-Fermi wavevector. Note that we reinserted h̄ as the relative factor
between energy and frequency in order to have the correct physical unit of wavevectors.

From the above result it is again straightforward to obtain the modified Coulomb interac-
tion in position space, which has the form

W
TF

(r) =
κe2

r
e−qTF

r . (17)

Here we recognize a (static) screened Coulomb potential, with screening lenght 1/q
TF

.

Just to have an idea of order of magnitude, we can evaluate q
TF

assuming an “ideal”
Hartree-Fock electron density for a uniform system, which corresponds to rs = 4.83, as
obtained in Text 11. We then find a screening lenght of the order of typical interatomic
distances in solids, revealing that the Coulomb interaction between single-particle excita-
tions in a metal is both weak and short-ranged in comparison to the bare electron-electron
interaction.
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In summary, we exemplified how zeroth-order Greens functions or the bare Coulomb in-
teractions are renormalized when we take into account specific series of diagrams for the
single-particle Green’s function. This was done starting from the simplest (first-order)
self-energy diagram. We just mention that the next natural step is to take this diagram
and renormalize both the G0 line to G and the U line to W , which is known as GW
approximation. We will not develop any further details in this context, as it would go
beyond our aim here, which is to present the basic aspects related to the study of electronic
interactions in solids.


