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FIP10601 – Text 13

Green’s functions: calculation methods

Equations of motion

One of the usual methods for evaluating Green’s functions starts by writing an equation
of motion for the desired function. The solution is, in general, approximate.

Let us take, for example, the retarded GF g+
kσ(t), introduced in Text 12. Differentiating the

equation that defines this time-dependent function [Eq. (1) of Text 12] yields the equation
of motion

d

dt
g+
kσ(t) = −i

d

dt

[
θ(t)〈{ckσ(t), c†kσ}〉

]
= −iδ(t)〈{ckσ, c

†
kσ}〉 − iθ(t)〈{ċkσ(t), c†kσ}〉 , (1)

where ċkσ(t) denotes the time derivative of ckσ(t), which is given by the Heisenberg equation

ċkσ(t) = −i [ckσ(t), H̄] (2)

(remembering that we are using a unit system in which h̄ = 1). Since the anticommutator
after δ(t) in Eq. (1) is known (= 1), we can write

i
d

dt
g+
kσ(t) = δ(t)− iθ(t)〈{[ckσ(t), H̄], c†kσ}〉 . (3)

Note that the last term on the r.h.s. is a new retarded GF, involving the commutator of
ckσ with the Hamiltonian. In most cases this commutator contains products of c†kσ and/or
ckσ operators (possibly with other subscripts). This means that the new GF is of higher
order. When writing the equation of motion for the latter, again a new GF is generated,
of even higher order, and so on, giving rise to an infinite hierarchical chain of equations of
motion.

For a non-interacting system, the commutator [ckσ(t), H̄] contains a single fermion operator,
which is ckσ(t). Then, Eq. (3) is reduced to a single equation for g+

kσ(t), whose solution
is exact. With interactions, however, one needs to decouple a chosen high-order GF in
terms of lower-order ones to cut the series. This can be a powerful approximation method
to evaluate Green’s functions. Its weakness resides in not being systematic, since a specific
decoupling is arbitrary, and further corrections cannot be just added in a controlled way.

We will not discuss this method in further detail. We close its presentation remarking that
equations of motion for advanced and Matsubara GF’s are quite similar to those shown
here for the retarded GF, yielding a unified form of the equation of motion in complex-
frequency space. This is consistent with these functions being related to one another, as
we saw in the discussion of their spectral representations.
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Perturbative calculation of the Matsubara GF

In the following, we show that it is possible to formally develop a perturbative method to
evaluate the Matsubara GF,

g̃kσ(τ) ≡ −〈T̂ c̃kσ(τ)c̃ †kσ(0)〉 , (4)

with the time-ordering operator T̂ , and the τ dependence in the Heisenberg picture
(with H̄ = H−µN), as defined in Text 12. Note that here we introduced a tilde to denote
operators with τ dependence in the Heisenberg picture. The reason for this is that in the
following we will use the previous notation for operators in the interaction picture.

Since the method is not restricted to electrons in solids, and to simplify the notation, we
present the perturbative approach for a generic fermionic Matsubara GF

g̃αγ(τ) = −〈T̂ c̃α(τ)c̃ †γ(0)〉 , (5)

where α and γ represent sets of relevant quantum numbers for the system in question. By
definition,

c̃α(τ) = eH̄τ cα e−H̄τ , (6)

and similarly for c̃†γ(τ).

Initially, we separate the Hamiltonian in two parts,

H̄ = H̄0 +H1 , (7)

assuming that the eigenvalue problem of H̄0 is exactly solvable. Choosing the interaction
picture, the time evolution of operators is given by H̄0 only. Exemplifying with cα, we
have

cα(τ) = eH̄0τ cα e−H̄0τ . (8)

We now introduce an operator S(τ) that relates the Heisenberg and interaction pictures
through a similarity transformation of the form

cα(τ) = S(τ) c̃α(τ)S−1(τ) . (9)

Therefore, from Eqs. (6), (8), and (9) we have that

S(τ) = eH̄0τ e−H̄τ . (10)

With this, the Boltzmann factor appearing in averages may be written as

e−βH̄ = e−βH̄0 S(β), (11)

since β is one of the values of τ . It should be noted that all information about H1 is
contained in S(τ).
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Perturbative calculation of S(τ)

Differentiating Eq. (10) with respect to τ , we have

dS(τ)

dτ
= H̄0 eH̄0τ e−H̄τ + eH̄0τ (−H̄) e−H̄τ . (12)

We must be careful not to change the order of factors containing H̄ and H̄0, since these
two operators (in general) do not commute.

Equation (12) may be developed as follows.

dS(τ)

dτ
= eH̄0τ H̄0 e−H̄τ − eH̄0τ H̄ e−H̄τ

= eH̄0τ (H̄0 − H̄) e−H̄τ

= −eH̄0τH1 e−H̄τ

= −eH̄0τH1 e−H̄0τeH̄0τ e−H̄τ . (13)

This yields the equation of motion

dS(τ)

dτ
= −H1(τ)S(τ) , (14)

where H1(τ) has its τ dependence in the interaction picture.

Formal solution of the equation of motion for S(τ)

If we were dealing with commuting functions, Eq. (12) would have the solution

S(τ) = exp

[
−
∫ τ

0

dτ ′H1(τ ′)

]
. (15)

However, given that H̄0 and H1 do not commute, the operators H1(τ) and H1(τ ′) at
different times do not commute either. Then, remembering that the exponential function
(like any function of an operator) should be interpreted as the sum of its power series, we
must keep the products of H1’s ordered in τ in each term of the series. Therefore, the
solution to Eq. (14) involves the time-ordering operator, and may be written in the form

S(τ) = T̂ exp

[
−
∫ τ

0

dτ ′H1(τ ′)

]
, (16)

which is to be interpreted as

S(τ) = 1 +
∞∑
n=1

(−1)n

n!

∫ τ

0

dτ1 . . .

∫ τ

0

dτn T̂ H1(τ1) . . .H1(τn) . (17)
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Perturbative expansion of the Green’s function

Starting with the definition of the Matsubara GF, Eq. (5), and using Eqs. (9) and (11),
we have

g̃αγ(τ) = −〈T̂ c̃α(τ)c̃ †γ(0)〉

= −
Tr e−βH̄ T̂ S−1(τ) cα(τ)S(τ)c†γ(0)

Tr e−βH̄

= −
Tr e−βH̄0S(β) T̂ S−1(τ) cα(τ)S(τ)c†γ(0)

Tr e−βH̄0S(β)
· (18)

Now, we should observe that:

� Inside the time-ordered product (i.e., under the action of T̂ ), the positions of S(τ)
and cα(τ) may be exchanged, since the former contains an even number of fermion
operators, which implies that there is no sign change. This causes the factors S(τ)
and S−1(τ) to cancel out.

� Since the operator S(β) is positioned to the left of the time-ordering operator but
its time is the highest possible, it may be placed anywhere inside the time-ordered
product.

So, we can write

g̃αγ(τ) = −
〈T̂ cα(τ)c†γ(0)S(β)〉0

〈S(β)〉0
, (19)

or, using Eq. (17),

g̃αγ(τ) = −
∑∞

n=0
(−1)n

n!

∫ β
0

dτ1 . . .
∫ β

0
dτn〈T̂ cα(τ)c†γ(0)H1(τ1) . . .H1(τn)〉0∑∞

n=0
(−1)n

n!

∫ β
0

dτ1 . . .
∫ β

0
dτn〈T̂ H1(τ1) . . .H1(τn)〉0

· (20)

The subscript zero on the averages reflects the fact that the Boltzmann factor contains
only H0.

Application to the electronic GF

We now apply the generic perturbative formalism just developed to the GF that describes
single-electron excitations in a metal.

First, let us remember the form of the Hamiltonian (keeping the e-e interaction term as
obtained for the homogeneous case),

H =
∑
kσ

εk c
†
kσckσ +

1

2

∑
kk′q
σσ′

U(q) c†k+q,σ c
†
k′−q,σ′ ck′σ′ ckσ . (21)
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We choose the band term as H̄0 and the e-e interaction part as H1.

At this point, the alert student remembers our previous conclusion that the interaction
term cannot be treated as a perturbation. It is true, and we must state clearly what will
be done. We cannot just evaluate a few terms of the perturbation series and neglect the
subsequent ones. We will use a method that allows to sum infinite series, that is, to take
into account contributions to all orders (though not the full contribution of each order).

We want to evaluate

g̃kσ(τ) = −〈T̂ c̃kσ(τ)c̃†kσ(0)〉 = −〈T̂ ckσ(τ)c†kσ(0)S(β)〉0
〈S(β)〉0

, (22)

which, from Eq. (20), becomes

g̃kσ(τ) = −
∑∞

n=0
(−1)n

n!

∫ β
0

dτ1 . . .
∫ β

0
dτn〈T̂ ckσ(τ)c†kσ(0)H1(τ1) . . .H1(τn)〉0∑∞

n=0
(−1)n

n!

∫ β
0

dτ1 . . .
∫ β

0
dτn〈T̂ H1(τ1) . . .H1(τn)〉0

· (23)

Wick’s theorem

From the form of H1, we see that the averages in Eq. (23) involve products of creation and
annihilation operators (in equal number), each operator associated to some “time”. For M
operators of each type, we have an M-particle propagator. Given that the average refers to a
non-interacting system, these M particles propagate independently. This means that the
average decouples into M single-particle GF’s, summed over all possible decouplings,
i.e., all forms of dividing the 2M original operators in M creation-annihilation pairs. Such
a decoupling scheme can be rigorously demonstrated, and constitutes the so-called Wick’s
Theorem. We will not develop the demonstration here, as this would lead to a more detailed
discussion of technical aspects than necessary to our purposes.

Zeroth order GF

Considering that Wick’s theorem leads to decoupling all averages into products of zeroth-
order GF’s, we begin by solving the non-interacting problem, which can be done exactly.

From the definition of the Matsubara GF, we have

g̃0
kσ(τ) = −〈T̂ ckσ(τ)c†kσ(0)〉0

= −θ(τ)〈ckσ(τ)c†kσ(0)〉0 + θ(−τ)〈c†kσ(0)ckσ(τ)〉0 . (24)

Using the explicit form of the non-interacting Hamiltonian, we can show (EXERCISE)
that

ckσ(τ) = e−ε̄kτckσ . (25)
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Then,

g̃0
kσ(τ) = e−ε̄kτ

[
θ(−τ)〈c†kσckσ〉0 − θ(τ)〈ckσc

†
kσ〉0

]
= e−ε̄kτ

{
θ(−τ)f(εk)− θ(τ)[1− f(εk)]

}
, (26)

where f(ε) is the Fermi function. Note that the zeroth-order GF does not depend on spin,
but we keep the σ index to indicate that the electron is in a well-defined spin state.

Taking the Fourier transform

G̃0
kσ(ωn) =

∫ β

0

dτ eiωnτ g̃kσ(τ)

= −[1− f(εk)]

∫ β

0

dτ e(iωn−ε̄k)τ , (27)

and after a simple algebraic development, we arrive at

G̃0
kσ(ωn) =

1

iωn − εk + µ
· (28)

Here we can explicitly verify the general properties of GF’s. Analytic continuation to real
frequencies yields the retarded GF

G0+
kσ(ω) =

1

ω − εk + µ+ iη
· (29)

This function is analytic except for poles whose real parts are at frequencies ω = εk − µ.
These are the single-particle excitation energies in the non-interacting case, which are just
individual electron energies measured from the chemical potential. The density of states
for these excitations is

ρσ(ω) = − 1

π N

∑
k

ImG0+
kσ(ω) =

1

N

∑
k

δ(ω − εk + µ) . (30)

Except for the displacement of the frequency range, which has ω = 0 corresponding to
εk = µ, we recognize the general definition of density of states for independent electrons.

Now, once we know the zeroth-order GF, the perturbative calculation can be worked out
starting from Eq. (23). A systematization of this procedure is presented below.

Diagrammatic representation

As a result of Wick’s theorem applied to Eq. (23), the terms of the GF perturbation series
(both numerator and denominator) contain products of factors U(q) and zeroth-order GF’s,
which are integrated over internal τ ’s, summed over internal wavevectors, and summed
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over internal spin states. But the number of such terms may be large, and quickly increases
at higher orders of perturbation. On the other hand, many terms are seen to be equivalent
by changes of integration or summation variables.

To facilitate a systematization of the method, a diagrammatic representation (Feyn-
man diagrams) is usually employed, with the zeroth-order GF and U(q) represented as
follows:

g̃0
kσ(τ) :

U(q) : (31)

The beginning of a g̃0 line is the time associated to the creation operator, while its end
time is the one associated to the annihilation operator.

The two extreme points of an interaction line are each associated to a pair of creation and
annihilation operators, being therefore points where a g̃0 line ends and another one begins.

The points of a diagram that are beginning, end, or connection of lines are called vertices.

Then the basic ingredients of the diagrammatic representation of a Matsubara GF are:

: two external vertices, associated to the operators that define the GF;

: an interaction line for each H1, connecting internal vertices.

With these ingredients, the application of Wick’s theorem consists in connecting the ver-
tices through g̃0 lines in every possible way, thus constructing several diagrams that
represent the terms in each order of perturbation. At a given order n, there are n inte-
raction lines, hence 2n internal vertices and two external ones. In each diagram, there is
wavevector conservation at each internal vertex, whereas the external wavevector k enters
the diagram at the initial vertex (time zero) and exits at the end vertex (time τ).

After writing the corresponding expressions, the contributions of all diagrams (in principle,
of all orders!) are just added.

It should be noted that there is a sum of diagrams associated with the numerator and
another to the denominator of Eq. (23). Only the diagrams representing the numerator
contain external vertices.

To arrive at the final form of the diagrammatic representation, let us analyze some examples
of numerator diagrams.

The only zeroth-order diagram is obviously a single g̃0 line:
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The first order diagrams are shown below.

The last two diagrams are disconnected. This kind of diagram is always composed by a
connected part, which (by definition) includes the two external vertices, and one or more
disconnected parts, which contain only internal vertices.

Extending to higher orders, and taking into account that each diagram corresponds to a
well-defined mathematical expression, it is not difficult to see that the sum of numerator
diagrams can be viewed as a product of two factors. One factor is the sum of all connected
parts, and the other is the unity plus the sum of all disconnected parts. But diagrams with
only internal vertices are the ones that constitute the diagrammatic representation of the
denominator of Eq. (22), whose expansion up to first order, as can be inferred from the
explicit form in Eq. (23), is given by

〈S(β)〉0 = 1 + + + · · · (32)

Therefore, the second factor in the numerator (containing only internal parts) exactly
cancels the denominator. The final result is that the GF is just given by the sum of all
fully connected diagrams.

For the homogeneous system that we are considering, diagrams that contain a g̃0 line closed
in itself are null, as they contain an interaction line with q = 0. So, the diagrams that
effectively contribute up to second order are shown below.

� Zeroth order:

� First order:

� Second order:
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It is usual (and convenient) to take the “time” Fourier transform, generating a frequency-
dependent GF. There is no change in the diagrammatic representation. However,

� lines now represent G̃0’s dependent on Matsubara frequencies;

� instead of integrals over internal τ ’s we have sums over internal Matsubara frequencies
(each sum with a factor 1/β);

� vertices no longer correspond to specific times, but there is frequency conservation at
each internal vertex, while the external frequency ωn enters a diagram at the initial
vertex and exits at the end one.

Sums of infinite series

From the diagrams up to order two, we can select, for example, the following series:

+ + + · · · (33)

This particular series exemplifies the general structure of the GF diagrammatic expansion,
which can be schematically depicted as

= + + + · · · (34)

The dark circle represents the so-called self-energy, denoted by Σkσ(ωn). It is the sum of
all irreducible internal parts. Internal means that the part does not include either the
initial or the final G̃0 line. Irreducible means that it cannot be divided into two disconnected
parts by cutting a single G̃0 line. From the diagrams up to order two, we have

= + + + + · · · , (35)

and so on to higher orders, with self-energy parts containing more interaction lines.

The diagrammatic series (34) can be translated into the equation

G̃kσ(ωn) = G̃0
kσ(ωn) + G̃0

kσ(ωn)Σkσ(ωn)G̃0
kσ(ωn)

+ G̃0
kσ(ωn)Σkσ(ωn)G̃0

kσ(ωn)Σkσ(ωn)G̃0
kσ(ωn) + . . . (36)

Using a simplified notation, and reorganizing the above equation as

G = G0 +G0Σ [G0 +G0ΣG0 +G0ΣG0ΣG0 + . . .] , (37)

we see that
G = G0 +G0ΣG . (38)
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The last equality has a structure known as Dyson’s equation. Its formal solution is

G =
G0

1−G0Σ
=

1

(G0)−1 − Σ
· (39)

Going back to full notation, and remembering that [G̃0
kσ(ωn)]−1 = iωn − εk + µ, we arrive

at the final formal solution

G̃kσ(ωn) =
1

iωn − εk − Σkσ(ωn) + µ
· (40)

The problem is therefore “reduced” to evaluate the self-energy. Note that any approxima-
tion for Σ (finite number of diagrams) corresponds to an infinite series for the GF.

In the next Text we will explore the above formal solution to deduce general properties of
single-particle excitations in the interacting electron system.


