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FIP10601 – Text 12

Green’s -function approach to interacting electrons

In the beginning of our discussion of electron-electron interaction in solids we remarked that
the concept of individual energies is not applicable to systems of many interacting particles.
Afterwards, we have seen that evaluation of the total energy is essentially restricted to the
ground state in usual approximation methods. From the point of view of comparison
with experimental results, it is actually more relevant to describe elementary excitations.
We already mentioned that the energy spectrum of single-particle excitations is of special
interest because of its connection with individual energies in the non-interacting limit.
Such excitations are best described by means of Green’s functions, which we now begin to
study.

One-particle Green’s function

Two versions of a single-particle Green’s function (GF) for the specific problem of inter-
acting electrons in the conduction band of a metallic solid are defined as

g±kσ(t) ≡ ∓ iθ(±t)〈{ckσ(t), c†kσ(0)}〉 . (1)

The + and − superscripts indicate respectively retarded (t > 0) and advanced (t < 0)
GF’s, chosen through the step functions θ(±t). This definition involves an anticommuta-
tor of annihilation an creation operators, which is the appropriate choice for fermions (an
equivalent definition for bosons would involve the commutator). We work in the Heisen-
berg picture (or Heisenberg representation), so that operators are time dependent. A few
comments are in order concerning Eq. (1).

� Choosing the first operator at time t and the second at time 0 (zero) is not restrictive.
It can be easily shown that it is equivalent to having the creation operator at a time
t′ and the annihilation operator at a time t′′ such that t′′ − t′ = t.

� We are interested in finite temperatures. Therefore, the mean value must be inter-
preted as a quantum statistical average. Since we are dealing with operators that
change the number of particles, we must use the gran-canonical ensemble. So, the
average is defined as

〈X〉 = Z−1Tr e−βH̄X , Z = Tr e−βH̄ , (2)

where
β ≡ 1/T , H̄ ≡ H − µN , (3)

T being the temperature, µ the chemical potential, H the Hamiltonian, and N the
total-number operator.
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� We will see that it is convenient to redefine the Heisenberg picture to use the “Hamil-
tonian” H̄ defined in Eq. (3), i.e.,

A(t) ≡ eiH̄tA e−iH̄t . (4)

This modification does not affect the time evolution of any operator that conserves
the number of particles (as, for instance, the Hamiltonian).

� We omitted kB in the definition of β, and 1/h̄ in the exponents of Eq. (4). This is
equivalent to adopting a “units system” in which kB = h̄ = 1 (implying that energy,
frequency, and temperature have the same unit).

Next we demonstrate that the GF’s defined in Eq. (1) allow to obtain the energy spectrum
of single-particle excitations.

Expanding the anticommutator in the r.h.s. of Eq. (1), we have

g±kσ(t) ≡ ∓ iθ(±t)
{
〈ckσ(t)c†kσ(0)〉+ 〈c†kσ(0)ckσ(t)〉

}
. (5)

We will formally evaluate average values in the energy representation, that is, using the
(supposedly existing) solutions of the eigenvalue problem

H̄|n〉 = Ēn|n〉 , Ēn ≡ En − µN , (6)

with the eigenvectors obeying the relationships

〈n|m〉 = δnm ,
∑
n

|n〉〈n| = 1 . (7)

Note that |n〉 represents, in compact notation, an energy eigenstate of the entire system
of interacting electrons, which can be written as a linear combination of Fock-space
basis vectors in the occupation-number representation, |nk1σ1 nk2σ2 nk3σ3 . . .〉 .

Let us develop the first average on the r.h.s. of Eq. (5) as follows.

〈ckσ(t)c†kσ(0)〉 = Z−1Tr e−βH̄eiH̄tckσe−iH̄tc†kσ

= Z−1
∑
n

〈n|e−βH̄eiH̄tckσe−iH̄tc†kσ|n〉

= Z−1
∑
nm

〈n|e−βH̄eiH̄tckσe−iH̄t|m〉〈m|c†kσ|n〉

= Z−1
∑
nm

e−βĒnei(Ēn−Ēm)t〈n|ckσ|m〉〈m|c
†
kσ|n〉 . (8)

Similarly, for the second average,

〈c†kσ(0)ckσ(t)〉 = Z−1Tr e−βH̄c†kσeiH̄tckσe−iH̄t

= Z−1
∑
m

〈m|e−βH̄c†kσeiH̄tckσe−iH̄t|m〉

= Z−1
∑
nm

〈m|e−βH̄c†kσ|n〉〈n|eiH̄tc†kσe−iH̄t|m〉

= Z−1
∑
nm

e−βĒmei(Ēn−Ēm)t〈m|c†kσ|n〉〈n|ckσ|m〉 . (9)
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Therefore,

g±kσ(t) = ∓ iθ(±t)Z−1
∑
nm

(
e−βĒn + e−βĒm

)
〈n|ckσ|m〉〈m|c

†
kσ|n〉ei(Ēn−Ēm)t . (10)

Defining frequency-dependent GF’s as the Fourier transforms of g±kσ(t),

G±kσ(ω) ≡
∫ ∞
−∞

dt eiωtg±kσ(t) , (11)

we have

G±kσ(ω) = ∓ iZ−1
∑
nm

(
e−βĒn + e−βĒm

)
〈n|ckσ|m〉〈m|c

†
kσ|n〉

∫ ∞
−∞

dt ei [ω−(Ēm−Ēn)]tθ(±t)] .

(12)
Using the identity ∫ ∞

−∞
dt eiαtθ(±t) = lim

η→0

∓1

i(α± iη)
, (13)

and (from now on) implicitly assuming the limit η → 0, we obtain

G±kσ(ω) = Z−1
∑
nm

(
e−βĒn + e−βĒm

) 〈n|ckσ|m〉〈m|c†kσ|n〉
ω − (Ēm − Ēn)± iη

· (14)

Inspecting the r.h.s. of this last equation we observe that the Green’s functions G±kσ(ω)
are analytic functions of ω except for poles immediately below (retarded GF) or above
(advanced GF) the real axis on the complex-frequency plane. The real part of each pole
is a frequency corresponding to the energy difference between two states whose numbers
of particles differ by ±1. If we assume that the state |n〉 corresponds to N particles, the
matrix element 〈m|c†kσ|n〉 is nonzero only if |m〉 corresponds to (N + 1) particles. Then,

Ēm − Ēn = E(N+1)
m − µ(N + 1)− E(N)

n + µN = E(N+1)
m − E(N)

n − µ . (15)

This is an excitation energy due to creation of an extra particle. Equation (5), and there-
fore Eq. (14), include the possibility of first creating a particle and later annihilating it
(illustrated in the last equation), as well as the possibility of first annihilating a particle
and later creating one, then involving states with N and N − 1 particles. This latter “pro-
cess” can be viewed as the creation (and subsequent annihilation) of a hole. Considering
both possibilities, these poles provide the single-particle excitation spectrum.

Isolated particle (or hole) excitations, as described by the GF’s introduced here, can occur
only by adding a particle to the system (or subtracting one from it), thus involving an
external source. On the other hand, it is possible to have a pair of excitations, one of
each kind, conserving the number of particles. Later on we will see that such particle-hole
excitations are the lowest-energy elementary excitations in a metal.
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Spectral representation

It is possible express the retarded and advanced GF’s in a simple integral form,

G±kσ(ω) =
∫ ∞
−∞

dε
ρkσ(ε)

ω − ε± iη
, (16)

usually called spectral representation, by defining the spectral function

ρkσ(ε) ≡ Z−1
∑
nm

(
e−βĒn + e−βĒm

)
〈n|ckσ|m〉〈m|c

†
kσ|n〉 δ(ε− Ēm + Ēn) . (17)

The quantity

ρσ(ε) ≡ 1

N

∑
k

ρkσ(ε) (18)

can be viewed as a generalization of the density of states (DOS), previously introduced for
independent electrons. Here it is actually the density of possible energies of single-particle
excitations. In the noninteracting limit these energies are those of available single-electron
states, and the independent-electron DOS is recovered.

Separating real and imaginary parts in Eq. (16), and using the identity

lim
η→0

1

π

η

x2 + η2
= δ(x) , (19)

we see that

ρkσ(ω) = ∓ 1

π
ImG±kσ(ω) . (20)

This relationship is very important because the formal definition (17) cannot be used in
practice to evaluate the spectral density, as it would involve solving the eigenvalue problem
of a many-body Hamiltonian. On the other hand, as we will see later, approximation
methods can be devised to directly evaluate Green’s functions. Then, the spectral density
given by Eq. (20) allows to obtain the DOS through Eq. (18).

Causal GF

One can also define a GF that coincides with the retarded one for t > 0, and with the
advanced one for t < 0. This is the causal Green’s function,

gckσ(t) ≡ −i〈T̂ ckσ(t)c†kσ(0)〉 , (21)

involving the time-ordering operator T̂ , which is actually a “super operator” since it
acts on operators. Its action on a generic product of operators A and B is defined as

T̂A(t)B(t′) ≡ A(t)B(t′)θ(t− t′)±B(t′)A(t)θ(t′ − t) , (22)

with the upper(lower) sign applying to bosons(fermions).
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Through the same kind of development utilized above for retarded and advanced GF’s, we
obtain that the causal GF has a spectral representation of the form

Gc
kσ(ω) =

∫ ∞
0

dε

[
Akσ(ε)

ω − ε+ iη
+

Bkσ(ε)

ω + ε− iη

]
, (23)

where

Akσ(ε) ≡ Z−1
∑
nm

e−βĒn〈n|ckσ|m〉〈m|c
†
kσ|n〉 δ(ε− Ēm + Ēn) ,

Bkσ(ε) ≡ Z−1
∑
nm

e−βĒn〈n|c†kσ|m〉〈m|ckσ|n〉 δ(ε+ Ēm − Ēn) . (24)

This spectral representation has two parts: a retarded one, corresponding to particle exci-
tations, and an advanced one, corresponding to hole excitations.

Here we see an interesting identification of particle propagation back in time with forward
propagation of a hole. This is an appealing feature of the causal GF. On the other hand,
the two terms in Eq. (23) are not convenient if we seek a DOS, for which a spectral
representation like Eq. (16) is appropriate. In both cases, there is also the need to deal
with time and temperature appearing in real and complex exponential functions of the
Hamiltonian. Fortunately, all these issues can be dealt with in a clever way, described in
the following section.

Matsubara GF

To avoid mixing real and complex exponential functions when evaluating GF’s at finite
temperature, Matsubara introduced a modified causal GF, defined by

g̃kσ(τ) ≡ −〈T̂ ckσ(τ)c†kσ(0)〉 , (25)

where the “time” dependence of operators is redefined to be

A(τ) ≡ eH̄τA e−H̄τ . (26)

Although τ is a real variable, it is referred to as imaginary time since it replaces the product
it in the usual Heisenberg picture. By definition, τ in Eq. (26) is continuous in the finite
range [0, β]. This restriction, as we will see, allows β-dependent exponentials associated to
ensemble averages to find a “natural” position within the τ -ordering. We keep the same
notation for the time-ordering operator T̂ , and its definition remains the same (with the
replacement t→ τ).

It should be noticed that τ as it appears in Eq. (25) is defined in the range [−β, β] since
it is actually a difference of two τ ’s. This apparent source of ambiguity disappears when
one resorts to Fourier representation, as we will see next.
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Spectral representation for the Matsubara GF

The fact that τ is defined in a finite range implies that we must use Fourier series instead
of Fourier transforms.

Initially, we will determine an important property of g̃kσ(τ) that will define the relevant
range for evaluating its Fourier components. Explicitly applying the τ -ordering in Eq. (25),
we have

g̃kσ(τ) = −θ(τ)〈ckσ(τ)c†kσ(0)〉+ θ(−τ)〈c†kσ(0)ckσ(τ)〉 . (27)

Developing the second average as follows,

〈c†kσ(0)ckσ(τ)〉 = Z−1Tr e−βH̄c†kσeH̄τckσe−H̄τ

= Z−1Tr eH̄τckσe−H̄τe−βH̄c†kσ

= Z−1Tr e−βH̄eβH̄eH̄τckσe−H̄τe−βH̄c†kσ
= 〈ckσ(τ + β)c†kσ(0)〉 , (28)

we verify that
g̃kσ(τ < 0) = −g̃kσ(τ + β) . (29)

The negative sign is a direct consequence of the fermionic algebra. It would be positive if
we were dealing with bosons.

We now write g̃kσ(τ) as a Fourier series:

g̃kσ(τ) ≡ 1

β

∑
n

e−iωnτ G̃kσ(ωn) . (30)

In order to satisfy Eq. (29) it is necessary that

e−iωnβ = −1 ⇒ βωn = (2n+ 1)π , n = 0,±1,±2, . . . (31)

The quantities ωn are called Matsubara frequencies. Only odd-integer multiples of π/β
appear here for fermions, while the bosonic version involves only even integers.

The “periodicity” relation (29) allows to write the Fourier-series coefficients of Eq. (30),
i.e., the frequency-dependent Matsubara GF’s, as integrals in the range [0, β],

G̃kσ(ωn) =
∫ β

0
dτ eiωnτ g̃kσ(τ) . (32)

Thus, only the term with τ > 0 in the τ -ordering contributes, and we can write

G̃kσ(ωn) = −
∫ β

0
dτ eiωnτ 〈ckσ(τ)c†kσ(0)〉 . (33)

As before, we formally choose the energy representation to evaluate averages, so that

〈ckσ(τ)c†kσ(0)〉 = Z−1
∑
nm

e−βĒn e(Ēn−Ēm)τ 〈n|ckσ|m〉〈m|c
†
kσ|n〉 . (34)
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Therefore,

G̃kσ(ωn) = −Z−1
∑
nm

e−βĒn〈n|ckσ|m〉〈m|c
†
kσ|n〉

∫ β

0
dτ e[iωn−(Ēm−Ēn)]τ . (35)

The integral appearing above is easily solved:

∫ β

0
dτ e[iωn−(Ēm−Ēn)]τ = − 1 + eβ(Ēn−Ēm)

iωn − (Ēm − Ēn)
. (36)

So, we finally obtain

G̃kσ(ωn) = Z−1
∑
nm

(
e−βĒn + e−βĒm

) 〈n|ckσ|m〉〈m|c†kσ|n〉
iωn − (Ēm − Ēn)

. (37)

This result is clearly similar to Eq. (14) for retarded and advanced GF’s. The only difference
is in the denominator, where we have iωn instead of ω ± iη. Therefore, with the same
spectral function, Eq. (17), we can write a generalized GF,

Gkσ(z) ≡
∫ ∞
−∞

dε
ρkσ(ε)

z − ε
, (38)

which is a function of the complex frequency z, and may appear in any one of the particular
cases

G±kσ(ω) = Gkσ(ω ± iη) , (39)

G̃kσ(ωn) = Gkσ(iωn) . (40)

This unification enables to evaluate only one of the GF types, obtaining the others by
analytic continuation in the complex-frequency plane. Note that, unlike real-time GF’s,
the singularities of a Matsubara GF are discrete poles on the imaginary axis. Without
going into mathematical details, we just mention that it can be rigorously demonstrated
that it is possible to perform the analytic continuation iωn ←→ ω ± iη.

In summary, we utilized a formal development, based on the assumption that a set of en-
ergy eigenvalues and corresponding eigenvectors exist for a system of interacting electrons,
in order to determine generic properties of single-particle Green’s functions. A central
role is played by the spectral function, which provides information about single-particle
excitations. But it can only be extracted after actually evaluating the Green’s function (in
one of its versions). Doing this through exact solution of the energy-eigenvalue problem is
not an option for realistic systems. We will explore alternative schemes in the next texts.


