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Applications of Boltzmann equation

Charge and energy (heat) transport

As a first example of using Boltzmann’s equation in the relaxation-time approximation, we
will obtain transport coefficients for a metal simultaneously subjected to a static electric
field E and to a temperature gradient ∇T . In fact, we will see that the presence of one
implies the presence of the other.
Since the temperature varies with position, we replace the usual Fermi function by a local-
equilibrium distribution function, which is written as

f 0(k, r) = 1
e[ε(k)−µ(r)]/kBT (r) + 1 . (1)

Note that the temperature variation induces position dependence of the chemical potential,

µ(r) = µ[T (r)] . (2)

As seen in Text 7, the steady-state Boltzmann equation in the relaxation-time approxima-
tion is

∂f

∂r
· ṙ + ∂f

∂k
· k̇ = −δf

τ
. (3)

The dependence of f on r is due to T and µ, so that

∂f

∂r
= ∂f

∂T
∇T + ∂f

∂µ
∇µ . (4)

We will consider a constant ∇T , which implies a constant ∇µ. It usually suffices to take
the linear-response limit, which allows the replacements

∂f

∂T
−→ ∂f 0

∂T
,

∂f

∂µ
−→ ∂f 0

∂µ
. (5)

Now the temperature T and the chemical potential µ are to be seen as average values
over the entire system, since inclusion of their spatial variations would lead to higher-order
contributions on ∇T . So, f 0 now denotes the “normal” Fermi function.
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From the explicit form of f 0, it is easy to see that

∂f 0

∂µ
= −∂f

0

∂εk
,

∂f 0

∂T
= εk − µ

T

(
−∂f

0

∂εk

)
. (6)

As k̇ = −eE/h̄, being therefore linear in E, we may perform the replacement

∂f

∂k
−→ ∂f 0

∂k
= ∂f 0

∂εk
h̄vk (7)

in Eq. (3). Furthermore, using the fact that ṙ = vk, the solution of that equation is

δf(k) =
(
−∂f

0

∂εk

)
τvk ·

[
−eE + εk − µ

T
(−∇T )

]
. (8)

Here we explicitly see that δf depends only on k and on the “external fields” E and (−∇T ).
For this, ∇µ has been absorbed on a redefinition of the electric field E, which is actually
an effective electric field, given by the gradient of the electrochemical potential (φ− µ/e).
In practice, the difference between this effective E and the applied electric field tends to
be negligible due to the weak temperature dependence of the chemical potential in metals
at normal experimental conditions.

Electric and thermal currents

One of the most important characteristics of metals is that they transport electric current.
The corresponding intrinsic quantity is the current density, i.e., the total current per unit
volume. It is often written as j = −nev, in terms of the global electronic density and
of some average (drift) velocity of the ensemble of conduction electrons. Therefore it
encompasses contributions from all the electrons in their respective states, and can be
written as

j = (−e)
4π3

∫
d3k vk f(k) . (9)

Using the previously defined non-equilibrium part of the distribution function, δf(k) ≡
f(k)− f 0(k), and taking into account that the equilibrium current is zero, we have

j = (−e)
4π3

∫
d3k vk δf(k) . (10)

Similarly, we can define a thermal-current density

u = 1
4π3

∫
d3k (εk − µ) vk δf(k) . (11)
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which is effectively an energy-current density. Note that the extra energy carried by an
electron, (i.e., its excitation energy) is εk − µ.
Using Eq. (8), these two current densities can be written as

j = e2 K0 · E−
e

T
K1 · (−∇T ) , (12)

u = −eK1 · E + 1
T

K2 · (−∇T ) , (13)

where we defined the tensors

Kn ≡
τ

4π3h̄

∫
dε
(
−∂f

0

∂ε

)
(ε− µ)n

∫
Sε

dSk

|vk|
vkvk . (14)

Low temperatures

If we take the zero temperature limit, in which

µ = εF ,

(
−∂f

0

∂ε

)
= δ(ε− εF ) , (15)

only K0 is non null. We must therefore utilize the low-temperature expansion developed
in Text 5. Defining

K(ε) ≡ τ

4π3h̄

∫
Sε

dSk

|vk|
vkvk , (16)

Eq. (14) assumes the form

Kn =
∫

dε
(
−∂f

0

∂ε

)
(ε− µ)nK(ε) . (17)

In Text 5 we obtained∫
dε
(
−∂f

0

∂ε

)
G(ε) = G(µ) + π2

6 (kBT )2
[
∂2G

∂ε2

]
ε=µ

+O(T 4) . (18)

The following correspondences apply in calculating Kn from Eq. (17):
K0 −→ G(ε) = K(ε) ,
K1 −→ G(ε) = (ε− µ) K(ε) ,
K2 −→ G(ε) = (ε− µ)2 K(ε) . (19)

Then, taking the most important term in each case, and considering that µ can be replaced
by εF at the same level of approximation, we have

K0 = K(εF ) ,

K1 = π2

3 (kBT )2
[
∂K(ε)
∂ε

]
ε=εF

,

K2 = π2

3 (kBT )2 K(εF ) = π2

3 (kBT )2 K0 . (20)
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Note that K0 does not depend explicitly on temperature, while K1 and K2 are both of
order T 2.

Electrical conductivity

The electrical conductivity σ is, by definition, the coefficient of proportionality between
electric field and electric-current density. More generally, this coefficient is a tensor. There-
fore, from Eq. (12),

σ = e2 K0 . (21)
Depending on the specific lattice symmetries, the conductivity tensor may assume simpler
forms. For example, for a cubic lattice

σxx = σyy = σzz ≡ σ , (22)

and all the other components are null. In this case, if E ‖ x,

(vv) · E = v2
xE = 1

3v
2E . (23)

Then, using the definition of K(ε), Eq. (16), we obtain

σ = e2τ

12π3h̄

∫
SF

v(k)dSk . (24)

Further simplification can be achieved by focusing on a case of Fermi level near a band
minimum (or maximum), so that ε(k) can be taken as approximately parabolic, and the
electrons (or holes) have a scalar effective mass m∗. In this case, the Fermi surface is
approximately spherical. Hence, the velocity has uniform magnitude over the entire surface,
being given by

vF = h̄k̄F
m∗ , (25)

where k̄F is the Fermi-surface radius, measured from the location of the band minimum
(or maximum). Taking vF out of the integral in Eq, (24), it reduces to∫

SF

dSk = 4πk̄ 2
F , (26)

and we obtain
σ = e2k̄ 3

F τ

3π2m∗ . (27)

If there are n electrons (or holes) per unit volume in the band, it is easy to see that
k̄ 3
F = 3π2n, so that the conductivity can be written as

σ = ne2τ

m∗ . (28)

This is the same as for free electrons, except that it applies also to a hole band, and lattice
effects are taken into account through the effective mass.
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Thermal conductivity

The thermal conductivity κ is a transport coefficient which relates thermal-current density
with temperature drop (negative of the gradient). So, by Eq. (13),

κ = 1
T

K2 . (29)

In practice, the thermal conductivity is measured in open circuit, that is, j = 0. Using this
condition in Eq. (12), one notices that there is a nonzero electric field which is induced by
the temperature gradient (we will come back to this in more detail later). Then, Eq. (13)
yields the combined coefficient of −∇T as

κ = 1
T

(K2 −K1 ·K−1
0 ·K1) . (30)

But the correction term is of order T 4 while K2 is of order T 2.

Wiedmann-Franz law

Equations (21) and (29) for σ and κ, together with the relationship between K2 and K0
in the last line of Eqs. (20), allow to write

κ

T
= π2k2

B

3e2 σ . (31)

This expression (or, originally, its scalar form) is known as Wiedmann-Franz law. It serves
as a test for the relaxation-time approximation, since the coefficient of proportionality
between κ/T and σ does not depend on τ . This coefficient is known as Lorenz number.
Its value from the above expression is 2.44 × 10−8 W Ω/K2. Experimental results for a
large number of metals (such as Au, Ag, Cu, Be, Mg, Zn, Al, Sn, . . . ) yield values ranging
from 2.0–2.5 × 10−8 W Ω/K2, and weakly dependent on temperature, in good agreement
with the Wiedmann-Franz law. However, there is also a large number of other metals for
which deviations of the Wiedmann-Franz law are quite significant. For these the validity
conditions of the relaxation-time approximation are not fulfilled.

Thermoelectric power

As mentioned above, an electric field appears due to the presence of a temperature gradient,
which characterizes a thermoelectric effect. Using the open-circuit condition j = 0 in
Eq. (12), we obtain

E = − 1
eT

K−1
0 ·K1 ·∇T . (32)

This equation can be written as
E = Q ·∇T , (33)



6 M. A. Gusmão – IF-UFRGS

where
Q = − 1

eT
K−1

0 ·K1 (34)

is known as thermoelectric power (also called thermopower), and relates the induced electric
field to the applied temperature gradient.
From the experimental point of view, thermoelectric effects are observed in two basic forms:

• Seebeck Effect – Two wires made of different metals are connected at one extremity,
and stretched side by side but not connect at the opposite end. Such a set is usually
called a thermocouple. If the connected extremities are kept at a different temperature
with respect to the non-connected ones, a voltage difference appears between the
latter. This happens because both metals are subjected to the same temperature
gradient, but the electric fields induced in each of them are not the same due to
their distinct thermoelectric powers. The thermopower Q (scalar in this setup) is
also called Seebeck coefficient (denoted by S).

• Peltier effect – In this case, two wires of the same metal are connected to terminals
of a voltage source, while their other extremities are connected through a wire made
of a different metal. A stationary electric current will flow around the circuit, but
heat will be radiated at one junction and absorbed at the other. This occurs because
the different thermoelectric powers of the two metals cause different thermal currents
to flow in each of them. The thermal and charge current-density intensities may be
related as u = Π j, through the Peltier coefficient (Π = T Q).

We must remark that additional temperature effects on the transport coefficients may
appear through the relaxation time, which takes part in the Kn factors through K(ε),
Eq. (16), and here was taken as constant. To obtain temperature-dependent relaxation
times it is necessary to analyze in detail the relevant scattering mechanisms. As previ-
ously mentioned in Text 7, the two dominant mechanisms in (non-magnetic) metals are
scattering by impurities and by phonons. It is quite obvious that scattering by impurities
is essentially independent of temperature, since atomic (electronic) excitation energies are
large. However, electron-phonon interactions yield temperature-dependent relaxation times
which agree well with experimental observations of the behavior of electrical conductivity
with temperature, as we will see in Unit 3.

Transport in the presence of electric and magnetic fields

Let us consider a system subjected to an electric field E and a magnetic field corresponding
to a magnetic induction B, both static and uniform. In order to focus on the interplay
between these two fields, we will neglect thermal effects. Then the distribution function is
spatially uniform, and Boltzmann’s equation in the relaxation time approximation takes
the simple form

∂f

∂k
· k̇ = −δf

τ
. (35)
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Using the semiclassical equation of motion for k̇ obtained in Text 7, we have

δf(k) = −eτ
h̄

(
−∂f
∂k

)
· [E + vk ×B] . (36)

Note that we cannot make the substitution (7) on the magnetic-field term because this
would involve vk · (vk × B) = 0. It is therefore necessary to include ∇kδf(k), neglected
before. Thus, the equation determining δf(k) is

[
1− eτ

h̄
(vk ×B) · ∇k

]
δf(k) = −eτ

(
−∂f

0

∂εk

)
vk · E . (37)

Comparing with the case without magnetic field, Eq. (8), we suppose a solution of the type

δf(k) = −eτ
(
−∂f

0

∂εk

)
v(k) ·Λ , (38)

where Λ is a vector to be determined. Restricting ourselves to the validity conditions of
the relaxation time approximation, which justify the hypothesis of a scalar effective mass,
it is easy to show that the equation determining Λ from the applied fields can be written
as

Λ− eτ

m∗ B×Λ = E , (39)

and that the current density is given by

j = σ0Λ , (40)

where σ0 = ne2τ/m∗, the electrical conductivity in the absence of magnetic field.
As an application of the above equations, let us consider a standard geometry of the Hall
effect, with B = (0, 0, B), j = (jx, 0, 0), and Ex 6= 0 due to an applied voltage along
x. The steady state current is restricted to the x direction, implying that only the Λx

component is non null. Equation (39) admits the solution Λ = (Ex, 0, 0), with the electric
field E = (Ex, Ey, 0), if the Ey component satisfies the condition

Ey = −eτExB
m∗ = −σ0ExB

ne
. (41)

The Hall coefficient is defined as
RH = Ey

jxB
. (42)

Considering that j = (σ0Ex, 0, 0), we obtain

RH = − 1
ne

. (43)
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Because only the Ex component is due to the applied voltage, the Ey component reveals
that a transverse voltage is induced in the sample by the presence of the magnetic field,
which characterizes the Hall effect. This can be understood as the result of the transversal
deviation of the electrons under the magnetic field, yielding an accumulation of negative
charge on one side of the sample, with a corresponding non-compensated positive charge
on the opposite side.
The negative sign of the Hall coefficient in Eq. (43) comes from the assumption that we
have conduction electrons. Applying the same formalism to a hole-like band, we obtain the
same form but with opposite sign. Therefore, a Hall-effect experiment yields information
on which type of charge carrier is present in the material.
It is worth remarking that the current density calculated here (i.e., for a single conduction
band, and in the Hall-effect geometry) does not show any magnetoresistance, i.e., magnetic-
field dependence of the electrical conductivity. Magnetoresistance appears when one deals
with less trivial band structures, involving the presence of more than one band at the Fermi
level, or the contribution of “open orbits” (very far from spherical Fermi surfaces). Other
observations of magnetoresistance occur in much different contexts, like systems presenting
strong electronic correlations, spin-orbit interaction, or magnetic order.

Transport in confined systems

Up to now we have focused on bulk electronic properties of three-dimensional crystalline
solids. Even though we considered, for convenience, a finite volume V , we used periodic
boundary conditions in all directions, which makes sense because because the thermo-
dynamic limit can be implied, expressing the relevant quantities in terms of appropriate
densities. In the presence of static external fields, stationary electric an thermal currents
where seen to be well described using the Boltzmann equation in the relaxation-time ap-
proximation. This is no longer true when the system size is sufficiently small in one or
more directions. The first step is to quantify how small.
We will restrict our analysis to charge transport, i.e., electric current. Our previous de-
scription for bulk systems in the linear response regime related the current density j to the
applied electric field E through the electrical conductivity σ. For an isotropic system, and
under simplifying assumptions, we obtained a scalar conductivity

σ = n e2 τsc

m∗ . (44)

Here we made a change of notation from Eq. (28), denoting the relaxation time as τsc,
instead of just τ , in order to explicitly relate it to scattering processes, which are intrinsic
to the material, and not related to specific features of a sample. We already know that
such processes (basically due to lattice defects or phonons) are essentially elastic, and only
involve electrons near the Fermi level. This allows to define a mean free path `sc = vF τsc,
where vF is the velocity of an electron with energy close to εF .
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Supposing a macroscopic sample of a solid, with length L and cross-section area A, its
electric resistance is given by

R = L

σ A
. (45)

Alternatively, we can write its conductance, which is the inverse of the resistance, as

G = A

L
σ . (46)

The well-known relation V = RI, between the applied voltage and the resulting current,
may be written in terms of the conductance as I = GV .
In macroscopic systems it is convenient to work with the intrinsic quantity σ, or its inverse,
the resistivity ρ, which are characteristics of the material, not the sample. However, the
dependence of σ on τsc and the dependence of the resistance or the conductance on the
sample’s dimensions, as seen in Eqs. (45) and (46), allow us to infer that these equations
should cease to be valid when at least one of the system’s dimensions is smaller than the
mean free path `sc.
We can also infer that transport properties are changed if there is quantum confinement,
which occur when one or more of the system dimensions is smaller than some (system
dependent) confinement length, `C. We can loosely define this length as being of the order
of the electron’s de Broglie wavelength, λdB. In bulk metals, since the relevant electrons
are those near the Fermi surface, we should have λdB ' 2π/kF , which is of the order of
the lattice parameters, i.e., less than 1 nm. On the other hand, in doped semiconductors,
which have much fewer electrons in the conduction band, kF is reduced by one or two orders
of magnitude. Consequently, λdB grows in the same proportion, and `C assumes typical
values between 10 and 100 nm. For this reason, confined systems are usually engineered
from semiconductors.
A common construction has a thin layer of a given semiconductor “sandwiched” between
two layers of another semiconductor, with a larger gap. Upon doping the side layers, the
added charge carriers (electrons or holes) “fall” into the central well, that has levels of lower
energy. The wavefunctions of particles in this quantum well are confined in the direction
perpendicular to the layers, having discrete quantized energies associated to this degree of
freedom. On the other hand, they are free to move in the two directions parallel to the
layers, having free-particle energies associated to these two degrees of freedom. The result
is that for each quantized energy due the transversal confinement there is a two-dimensional
electron gas (2DEG). Now, it is easy to infer that confinement in two directions will yield
a one-dimensional electron gas (1DEG) for each channel defined by the discrete energies
resulting from quantization in the other two dimensions. This latter system is called a
quantum wire. Finally, confinement in all three dimensions results in a totally discrete
energy spectrum. Such a system, being small in all directions, is called a quantum dot.
Obviously, we can only talk about transport when the system is not quantum confined
in the direction of flow of an electric current. This means that the system size L in this
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direction is larger than the confinement length (L > `C), but there can be confinement in
the transversal directions.
The most confined system for which one can still have transport is a quantum wire. Sup-
posing that its two extremities are connected to bulk conductors, there is no confinement
along its length L. If the wire is very “clean” (few defects), and the temperature is very
low (no phonons), we may have L < `sc, resulting in ballistic transport.
What is the conductance of such a wire? Our experience with bulk metals leads us to
think that the conductance would be infinite, since the electrons travel without scattering.
But the right answer must be obtained from the analysis of an appropriate experimental
situation. The metallic contacts at both ends of the wire may be viewed as electron
“reservoirs”, which are connected to a voltage source (a battery, for example), so that a
voltage difference V is established between them, as schematically depicted in Fig. 1.
In one dimension, the current I is the same as the current density j, and can be evaluated
by the expression

I = −e 2
L

∑
k
vk = −2 e

∫ dk

2π vk , (47)

where the factor 2 comes from spin degeneracy. It is convenient to rewrite this equation
in terms of an energy integral,

I = −e
∫ µ2

µ1
dε 1

2D(ε) v(ε) . (48)

The integration limits take into account that only non-compensated electrons, i.e., those
in states in between the two chemical potentials (Fermi levels), contribute to the current.
The factor 1

2 is necessary because these electrons are moving from left to wright while the
DOS includes the states with opposite wavevectors.

V

I

-e
S D

I

Figure 1: Schematic representation of a quantum wire connected to two metallic
reservoirs subjected to a voltage difference. The letters S e D stand for source and
drain with respect to the electrons.
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The relevant DOS is that of a one-dimensional electron gas. From the general equations
seen in Text 3, it is easy to verify (EXERCISE) that it can be written as

D(ε) =
(

m∗

2π2h̄2

)1/2
ε−1/2 . (49)

The complete specification of the energies involves a label referring to the confined part.
We can write the energies as εα(k) = εα + ε(k), where the subscript α represents a pair
of quantum numbers associated to the quantization due to confinement in the transversal
directions. Each α defines a conduction channel, since it refers to a one-dimensional band
of energies ε(k). Eq. (48) gives the contribution of a single channel.
From the above form of the one-dimensional DOS, and taking into account that v = h̄ k/m∗

for the corresponding parabolic band, it is easy to verify that

1
2D(ε) = 2

h v(ε) . (50)

Inserting into Eq. (48), we obtain the simple relationship

I = −2 e
h

∆µ . (51)

On the other hand, a difference between the chemical potentials is due to the applied
potential, i.e., ∆µ = −eV . So,

I = 2e2

h
V . (52)

Since we should have I = GV , we obtain the quantum conductance (or conductance quan-
tum)

G0 = 2e2

h
. (53)

The conductance of a given quantum wire is, then, quantized, being the product of G0 by
the number of channels in the energy window of width ∆µ .
It is interesting to observe that the conductance quantum is universal, since it does not
depend on specific characteristics of the material from which the wire is made. Further-
more, the value of G0 is far from infinity, in contrast to our first conjecture. In fact, the
corresponding resistance is approximately 12.9 kΩ, which is quite large in comparison with
typical metallic resistors. For instance, since the resistivity of copper at room temperature
is about 1.6 µΩ cm, the resistance of a copper wire with a diameter of 6 mm and a length
of 5 cm is approximately 28 µΩ.


