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FIP10601 – Text 6

Bloch electrons in the presence of external fields

After discussing the conduction band of a metal viewed as a Bloch-electron system in ther-
modynamic equilibrium at nonzero temperature, we turn now to its response to external
applied fields. Time-varying fields are in general associated to electromagnetic radiation,
and hence related to optical properties. In solids, they can be useful to probe the band
structure. Here we will focus on static fields, which cause stationary response. We will
begin by studying the effect of an applied electric field on the Bloch states, then we will
present a quantum treatment of magnetic-field effects, and finish with the description of
Bloch-electron dynamics in the semiclassical approximation.

Electric field – quantum treatment

In the presence of a static and uniform electric field E, the Hamiltonian of a single electron
is

H = p2

2m + V (r) + eE.r ≡ H0 + eE.r . (1)

By hypothesis, we know how to solve the energy-eigenvalue problem in the absence of field,

H0ψnk(r) = εn(k)ψnk(r) . (2)
Note that the term E.r breaks the invariance under lattice translations.
Let us assume that the electric field is applied at time t = 0, when the electron was in a
certain Bloch state ψnk(r). We then have an initial condition

ψ(r, 0) = ψnk(r) , (3)

and the time evolution is given by

ψ(r, t) = e−iHt/h̄ψ(r, 0) . (4)

Let us see what is the effect of lattice translations on ψ(r, t).

TRψ(r, t) = TRe−iHt/h̄ψ(r, 0) = TRe−iHt/h̄T−1
R TRψ(r, 0) . (5)

It is easy to verify that
TRe−iHt/h̄T−1

R = e−iTRHT−1
R t/h̄ , (6)

and that
TRHT−1

R = H + eE.R . (7)
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Moreover, ψ(r, 0) obeys Bloch’s theorem, i.e.,

TRψ(r, 0) = TRψnk(r) = eik.Rψnk(r) = eik.Rψ(r, 0) , (8)

so that,

TRψ(r, t) = e−iHt/h̄e−ieE.Rt/h̄eik.Rψ(r, 0)
= ei(k−eEt/h̄).Re−iHt/h̄ψ(r, 0)
= ei(k−eEt/h̄).Rψ(r, t) . (9)

Therefore, ψ(r, t) obeys Bloch’s theorem with a time-dependent wavevector

k(t) = k(0)− e

h̄
Et . (10)

This result should be interpreted with caution because we are not solving the eigenvalue
problem of the complete Hamiltonian, that is, ψ(r, t) is not an eigenfunction ofH, although
ψ(r, 0) = ψnk(r) is an eigenfunction of H0. If we imagine that the electric field is turned off
at time t, without causing an interband transition (adiabatic approximation), at subsequent
times the electron will be found in an eigenstate of H0 corresponding to the wave vector
k(t). Since we can choose the turn-off time arbitrarily, we can view the time evolution as
if the electron were continually visiting the states of H0 in band n, with “its” wavevector
“varying” in time according to the equation of motion

h̄k̇(t) = −eE . (11)

Note that it looks like a classical equation of motion, but remember that h̄k̇ 6= ṗ. Later
on, we will see that the same equation of motion appears in a semiclassical approach that
we will employ to study transport phenomena.

Magnetic field - quantum treatment

In the case of a magnetic field, we cannot employ the same development as for the electric
field because the Hamiltonian transformation under a lattice translation is no longer a
simple additive constant. This is due to the inclusion of a vector potential A(r) in the
kinetic-energy term, with the magnetic field corresponding to a magnetic induction B =
∇×A. We will utilize an alternative formal procedure, described below.
We have seen that the eigenvalues of the translation operator TR are eik.R. But TR changes
the position dependence of any function from r to r + R. Since the generator of any
translations is the momentum, we can write TR = eiR.p̂/h̄ (where p̂ is the momentum
operator), and we have

TRψnk(r) = eiR.p̂/h̄ψnk(r) = ψnk(r + R) = eik.Rψnk(r) (12)
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On the other hand, similarly to what we did to introduce the Wannier functions, the
periodicity of εn(k) in the reciprocal lattice implies that we may write it as a Fourier series
of the form

εn(k) =
∑
i

εni eik.Ri . (13)

This can be viewed as an eigenvalue of an operator defined as

ε̂n(p̂) =
∑
i

εni eiRi.p̂/h̄ , (14)

which satisfies
ε̂n(p̂)|nk〉 = εn(k)|nk〉 . (15)

Now we can replace H by the effective Hamiltonian

H̄ =
∑
n

ε̂n(p̂) , (16)

since the two forms yield the same eigenvalue spectrum.
Note that the effective Hamiltonian H̄ can only be constructed after solving the original
eigenvalue problem with H, which depends on the lattice potential V (r). This potential
does not appear explicitly in H̄, which can be seen as “purely kinetic” but in a “curved
space” that accounts for the effect of the lattice potential. This is consistent with h̄k being
referred to as crystal momentum.
The advantage of defining such an effective Hamiltonian is in the natural assumption
that a magnetic field can be inserted through the substitution

p̂→ p̂ + eA(r̂) , (17)

extending to the effective Hamiltonian what is true to the original one.
Rather than trying to rigorously justify this substitution, we will apply it to a specific case
and verify its consistency in a known limit.
Let us focus on a tight-binding band for a simple cubic lattice of lattice constant a, for
which

ε(k) = ε0 − 2t [cos(kxa) + cos(kya) + cos(kza)] . (18)
We choose ε0 = 6t so that the band minimum at the BZ center corresponds to ε = 0. For B
(of magnitude B) applied along the z axis, we can fix the gauge such that A = (0, Bx, 0).
The effective Hamiltonian is then

H̄ = 6t− 2t
[
cos

(
−ia ∂

∂x

)
+ cos

(
−ia ∂

∂y
+ eBa

h̄
x

)
+ cos

(
−ia ∂

∂z

)]
. (19)

Using ψ(x, y, z) = eikzz eikyy φ(x) as an ansatz , the energy-eigenvalue problem implies that
φ(x) is determined by the equation

φ(x+ a) + φ(x− a) +
[
ε− 6t
t

+ 2 cos (kza) + 2 cos
(
kya+ eBa

h̄
x
)]
φ(x) = 0 . (20)



M. A. Gusmão – IF-UFRGS 4

It is easy to show (EXERCISE) that this last equation, when we rewrite t in terms of the
effective mass m∗ as t = h̄2/2m∗a2, and then take the limit a → 0, yields the differential
equation

− h̄2

2m∗φ
′′ + 1

2m
∗(ω∗c )2(x− x0)2φ =

(
ε− h̄2k2

z

2m∗

)
φ , (21)

where ω∗c = eB/m∗ is the effective cyclotron frequency, and

x0 ≡ −
h̄ky
m∗ω∗c

. (22)

Equation (21) is derived in many texts directly for a free electron model with a magnetic
field as chosen above. Therefore, the consistency of Eq. (17) is checked in the sense that
it reproduces the correct result for a → 0, which is actually the free-electron limit. The
energy eigenvalues obtained from Eq. (21) are

εkz ,ν = h̄2k2
z

2m∗ +
(
ν + 1

2

)
h̄ω∗c , ν = 0, 1, 2, . . . , (23)

where ν labels the so-called Landau levels. The harmonic-oscillator part defines circles of
constant energy parallel to the kxky plane, but with different energies as kz varies. These
levels are highly degenerate, since the total number of states must not change with field.
Going back to the tight-bind problem on a lattice, we just present a few comments on the
solutions of Eq. (20). As only the motion in the kxky plane is affected by the field, we will
restrict ourselves to the case kz = 0 for simplicity. In the tight-binding approach, electron
positions along the x axis are integer multiples of the lattice parameter a. We then write
Eq. (20) in the form

φ(n+ 1) + φ(n− 1) + 2 cos (2πnα− δ)φ(n) = εφ(n) ; n integer. (24)

This is a finite-difference equation which is known as Harper’s equation. At this point, we
have eliminated the additive constant 6t, previously used to compare with the continuous
limit, so that the eigenvalue ε is in the range [−4, 4] (in units of the hopping parameter
t). Furthermore, the lattice constant a has become the unit length, δ is a dimensionless
parameter associated with ky, and we define

α ≡ Ba2/(h/e) , (25)

which is the ratio between the magnetic flux through a unit cell and the quantum of
magnetic-flux h/e (' 4.14× 10−15 Tm2).
Harper’s equation was solved by D. R. Hofstadter in 1976 [Phys. Rev. B 14, 2239 (1976)].
Figure 1 (similar to one that appears in the paper cited here) shows the energy spectrum
as a function of α. The resulting pattern is known as Hofstadter’s butterfly. It is actually
a fractal pattern, only a part of which is shown in the figure. The range is restricted to
0 ≤ α ≤ 1, but the spectrum repeats itself with period 1. Physically relevant situations
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Figure 1: A version of the Hofstadter’s butterfly for α = p/q with integer p, and
q = 128.

involve small α, since α ∼ 1 corresponds to very intense magnetic fields. For α = 0 we
have the (continuous) tight-binding band. If we choose a rational α = p/q, that band
splits up into q sub-bands. They become Landau levels (zero-width sub-bands) in the
continuum limit, but acquire finite widths because their high degeneracy is lifted by the
lattice potential.
The above analysis did not take spin into account. We know that the electron spin is
associated to an intrinsic magnetic moment. Thus, the full Hamiltonian should have a
term describing the interaction of the spin with the magnetic field. This is relevant for
an analysis of the magnetic response, i.e., the appearance of a magnetization induced by
the applied field. Magnetic properties of solids will not be discussed in this course, being
the subject of a more specific one. Hence, we will neglect the spin contribution here, and
concentrate on the coupling of electric and magnetic fields with the electron charge only.

Dynamics of Bloch electrons – Semiclassical approximation

The preceding discussion focused on equilibrium properties of Bloch electrons subjected to
a magnetic field. It was clear that resorting to an effective Hamiltonian is helpful, due to
the difficulties inherent to a full quantum treatment of the lattice problem.
If we extend the effective-Hamiltonian method to take into account also the electric field,
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we have
H̄ =

∑
n

εn(p̂/h̄+ eA(r̂)/h̄) + eφ(r̂) , (26)

where φ(r) is the scalar potential whose gradient gives the electric field.
We already mentioned the difficulties associated to the presence of a position-dependent
vector-potential in the kinetic term. A usual approach is to connect the effective Hamilto-
nian H̄ with equations of motion that would be obtained in its classical limit.
From Classical Mechanics, we know that a particle of charge q in the presence of an electric
field E and a magnetic induction B obeys the classical equation of motion is

mv̇ = q (E + v×B) , (27)

where the right-hand side is the well-known Lorentz force, and the velocity is given by one
of Hamilton’s equations as

v = dr
dt

= ∂H(r,p, t)
∂p

. (28)

Note that the left-hand side of Eq. (27) is the time derivative of the so called kinetic
momentum mv = p − qA, which defines the kinetic energy. From the derivation of the
effective Hamiltonian, it is natural to associate the kinectic momentum with wavevectors
of Bloch states, and these become time-dependent in the presence of external fields. Thus,
Eq. (27) corresponds to

h̄k̇ = −e [E + vn(k)×B] . (29)
while Eq. (28) is consistent with our definition of velocity of a Bloch electron,

ṙ = 1
h̄
∇k εn(k) ≡ vn(k) . (30)

In summary, the semiclassical approximation consists in associating a position r to a Bloch
electron of wavevector k. These quantities, which obey the above equations of motion,
must be interpreted as indicating average values, that is, the centers of a wavepacket in
wavevector space and in position space, respectively. This is done independently in each
band, since any transition between bands would, of course, be an essentially quantum
process, which cannot be described in the context of a semi-classical approximation. The
semi-classical nature is evidenced in Eq. (30), where it is clear that the velocity depends
on the solution of the quantum-mechanical problem in the absence of external fields.
Let us analyze the validity conditions of the semiclassical approximation for Bloch electrons.

• The above mentioned wavepacket has widths ∆k and ∆r in the respective spaces.

• Assigning a reasonably well-defined k implies that |∆k| � |K0|, where K0 represents
the smallest reciprocal-lattice vector, which limits the 1st BZ.

• Given that |K0| ∼ 1/a, where a is a typical lattice parameter, we must have ∆r� a.
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• Despite the notation in Eq. (29), the external fields may depend on r, but the equa-
tion is local. This requires the characteristic distance for variations of the external
fields to be large compared to the wavepacket width in real space. Denoting this
characteristic distance by λ, we conclude that we must have λ� |∆r| � a.

• We also have conservation of the band index. Without going into details, we can say
that the absence of transitions between bands requires large gaps compared to the
energy gained from external fields.

Note that it is important to take rigorously into account the lattice potential through the
band energies εn(k), even though the external fields are included by means of a classical
force. A classical treatment of the lattice potential would violate the validity conditions
stated above, since this potential varies in a characteristic distance of the order of a.
The equations of motion (29-30) will play an important role in our study of transport
processes in metals, to be developed in the following Texts.


