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FIP10601 – Text 5

Thermodynamics of Bloch electrons

Equilibrium states for T 6= 0

Within the independent-electron approximation, conduction electrons of a metal do not
interact with one another, but obey Pauli’s exclusion principle, thus forming a Fermi gas.
The ground state defines a Fermi Surface in k-space, with the enclosed volume (occupied
states) usually referred to as the Fermi sea. But the ground-state could only be an actual
state of the system strictly at zero temperature.
From Statistical Mechanics we know how to describe a Fermi gas in thermodynamic equilib-
rium at a given absolute temperature T . The starting point is the probability of occupation
of one-particle energy states, which is given by the Fermi-Dirac distribution (also called
Fermi function),

f(ε) = 1
eβ(ε−µ) + 1 , with β ≡ 1

kBT
, (1)

Here the chemical potential µ plays an important role, as we are using the grand-canonical
ensemble, and µ must be tuned to ensure the expected number of particles, as we will see
in detail below. It can be seen that

lim
T→0

µ = εF , (2)

since in this limit f(ε) is either 1 or 0 depending on (ε − µ) being, respectively, negative
or positive. This is consistent with our previous definition of εF as the maximum energy
of occupied one-electron states in the system’s ground state. Figure 1 shows plots of the
Fermi-Dirac distribution for T = 0 and for a non-zero temperature (expressed in terms of
the Fermi energy). Note that f(ε) deviates from its zero-temperature “step” shape in a
region of width ∼ kBT , roughly centered at εF .
The Fermi distribution can be used for Bloch electrons, since they are formally non-
interacting, but the possible individual energies are constrained to those appearing in
the band structure. This information can be taken into account via the density of states
(discussed in Text 3), so that we can view the product f(ε)D(ε) as a distribution of occu-
pied states. Figure 2 shows an example using a free-electron-like DOS (the reader should
be able to verify, from the definitions in Text 3, that this DOS has a square-root shape).
The Fermi temperature is defined as TF ≡ εF/kB, with εF measured from the bottom of
the band. Typically, in a metal the Fermi energy has the same order of magnitude of the
conduction band width, which is generally in the range 1–10 eV. The conversion factor is
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Figure 1: Variation of the Fermi function with energy for T = 0 and a low non-zero
temperature.
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Figure 2: Distribution of occupied states in a free-electron band as a function of
energy, for the same temperatures as in Fig. 1.

approximately 1.16 × 104 kB K/eV, implying that TF ∼ 104–105 K. Therefore, the step
deformation at room temperature is only about 1%, which reveals that real metals at room
temperature are very close to their ground state. So, a zero-temperature concept as the
Fermi surface is still useful, even though we expect to have a somewhat fuzzy surface, with
part of the electrons promoted from states just below the Fermi level to states just above
it. Note that the exclusion principle has a huge effect, as electrons deep down in the Fermi
sea cannot gain any energy due to the lack of available states.
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Thermodynamic properties

In the absence of applied fields, the most important property of a solid that can be ex-
perimentally measured is the specific heat. The electronic contribution to this quantity is
given by

cel = 1
V

∂E(T )
∂T

, (3)

where E(T ) is the total electronic energy at temperature T .
According to our discussion in the previous section, the energy per unit volume can be
expressed as

E(T )
V

= 2
∫ ∞
−∞

dεD(ε)f(ε, T ) ε , (4)

with a factor 2 accounting for spin degeneracy. The integral can be over an infinite range
because the relevant energy region is selected by D(ε). We explicitly included T as an
argument of the Fermi function to show where the temperature dependence appears on
the right-hand side.
We also need to take into account that the average number of electrons per unit volume
(n = N /V ) must obey the relation

n = 2
∫ ∞
−∞

dεD(ε)f(ε, T ) . (5)

Since the electron density does not vary with temperature, the above equation determines
the chemical potential for which the equality is verified at each chosen temperature, i.e.,
the function µ(T ). We already know this function’s zero-temperature limit, µ(0) = εF .
Considering that µ and T appear in f(ε, T ) combined in the form (ε− µ)/kBT , and that
an increase of T alone reduces the denominator in Eq. (1), we may expected µ to decrease
with increasing T to compensate the first effect.
Equations (4) and (5) are both of the type

I =
∫ ∞
−∞

dε g(ε)f(ε, T ) , (6)

so that a single scheme may be used to solve both. We already observed that usual
experimental conditions involve temperatures that are small in the scale of the Fermi
temperature TF . We can therefore expect to evaluate thermodynamic quantities of the
electron gas using a low-temperature expansion, that is, expressing these quantities as
power series in T , or, more precisely, T/TF . However, a direct expansion of the Fermi
function in Eq. (6) is inconvenient as it would also involve temperature derivatives of the
chemical potential. The workaround is as follows.
For T → 0, f(ε) only varies significantly with temperature for ε ∼ µ ∼ εF (see Fig. 1).
Note that (−∂f/∂ε)→ δ(ε−µ) as T → 0. Now, integrating the right-hand side of Eq. (6)
by parts gives

I =
∫ ∞
−∞

dε G(ε)
(
−∂f
∂ε

)
, (7)
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where G(ε) is the primitive function of g(ε), i.e.,

G(ε) =
∫ ε

−∞
dε ′ g(ε ′ ) . (8)

The integrand in Eq. (7) contains the energy derivative of the Fermi function, which is
strongly peaked at ε = µ. So, it is convenient to expand G(ε) in powers of ε − µ (Taylor
series). After solving the integrals, we can rearrange the results as a power series in T/TF .
The above scheme yields the formal solution

I = G(µ) +G ′(µ)F1 +G ′′(µ)F2 + . . . (9)

where primes indicate derivatives with respect to ε, with the results evaluated at ε = µ,
and

Fl ≡
1
l!

∫ ∞
−∞

dε (ε− µ)l
(
−∂f
∂ε

)

= (kBT )l
l!

∫ ∞
−∞

d

(
ε− µ
kBT

) (
ε− µ
kBT

)l e(ε−µ)/kBT[
e(ε−µ)/kBT + 1

]2
= (kBT )l

l!

∫ ∞
−∞

xldx
(ex + 1)(1 + e−x)

≡
{

2 c l(kBT )l for even l ,
0 for odd l .

(10)

So, we arrived at an expression explicitly containing powers of T , besides the implicit
dependence through µ(T ). The c l coefficients can be exactly evaluated. In particular,

2 c 2 = π2

6 . (11)

Therefore, to order T 2, we can write
∫ ∞
−∞

dε g(ε)f(ε) =
∫ µ

−∞
dε g(ε) + π2

6 (kBT )2
[
∂g(ε)
∂ε

]
ε=µ

+ . . . (12)

This low-temperature expansion is also known as Sommerfeld expansion.

Chemical potential at low temperatures

Using Eqs. (5) and (12), and the fact that n(t) = n(0), we have
∫ ∞

0
dε D(ε)f(ε) =

∫ µ

0
dε D(ε) + π2

6 (kBT )2 D′(µ) =
∫ εF

0
dε D(ε) . (13)
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From now on we chose the lower band edge at ε = 0, so that D(ε) = 0 for ε < 0. The
integral on the right side can be divided in two parts,∫ εF

0
dε D(ε) =

∫ µ

0
dε D(ε) +

∫ εF

µ
dε D(ε) . (14)

For low temperatures εF ∼ µ. Besides, D(ε) is usually a smooth function of ε. Thus,∫ εF

µ
dε D(ε) ' D(εF )(εF − µ) , (15)

from which it follows that

µ = εF −
π2

6 (kBT )2D
′(εF )

D(εF ) + O(T 4) . (16)

Note that we replaced D ′(µ) by D′(εF ) in the coefficient of T 2 since the difference would
be of order T 4. Keeping only the first two terms, we can rewrite this equation as

µ = εF

[
1− π2

6 ΛF

(
T

TF

)2]
, ΛF ≡

εFD
′(εF )

D(εF ) , (17)

where ΛF , as defined, is a dimensionless quantity of order one. We leave as an EXERCISE
to show that it assumes the numerical value 1/2 for a free-electron DOS (independently
of the effective mass m∗). This analysis makes it clear that the relative deviations of µ(T )
with respect to εF are given as a power series on (T/TF ). As expected, µ < εF for T > 0.
However, this reduction is negligible in most practical cases, the relative correction having
an order of magnitude of 10−4 at room temperature.

Specific heat at low temperatures

Applying the Sommerfeld expansion up to second order to the average energy per unit
volume, Eq. (4), gives us

E

V
= 2

∫ µ

0
εD(ε)dε+ π2

3 (kBT )2 [µD ′(µ) +D(µ)] . (18)

Up to order T 2, the last term above can be evaluated at µ = εF . Furthermore, dividing
the integration region as we did when calculating the chemical potential, we have

E

V
= 2

∫ εF

0
εD(ε)dε+ 2εF

[
(µ− εF )D(εF ) + π2

6 (kBT )2D′(εF )
]

+ π2

3 (kBT )2D(εF ) . (19)

The term in square brackets is equal to zero as a consequence of Eq. (16). Therefore,

E

V
= E0

V
+ π2

3 D(εF )(kBT )2 . (20)
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Differentiating with respect to the temperature, we obtain the electronic specific heat as

cel = γT , γ = 2π
2

3 k
2
BD(εF ) . (21)

with corrections of O(T 3).
Once more it is possible to verify that we actually have the ratio T/TF . To do this, we
may suppose that D(ε) grows monotonically with ε. If it is not so, we should resort to
a hole-band description, for which this assumption would apply. Then, we can define an
average of the DOS up to the Fermi energy as

D̄ ≡ ζD(εF ) ≡ 1
εF

∫ εF

0
dεD(ε) = n

2εF
, (22)

where ζ is a number smaller than 1. Using the above to replace D(εF ) in Eq. (21), we can
write the specific heat as

cel = π2

3ζ n kB
T

TF
. (23)

Specific-heat measurements in metals confirm the linear behavior with temperature. From
the second equality in Eq. (21), the experimental value of γ may be viewed as a measure
of the DOS at the Fermi level. Since the free-electron DOS is easily evaluated, the ratio
between experimental and free-electron values of γ may be used to judge how accurate
this simplified model might be. This ratio is actually close to 1 for some “well behaved”
metals like Na, K, Ag, or Au, but is larger by an order of magnitude for Fe, Nb, or Mn, for
example. This may be understood by the presence of narrow (3d) bands near the Fermi
level in the latter examples, as a narrow band must have a higher DOS in comparison to
a wide band to accommodate the same number of states.
Other thermodynamic quantities are mostly related to effects of applied fields, and will be
discussed in the remaining Texts of this Unit.

Thermal properties of semiconductors

We have seen that doped semiconductors are actually conductors with a low electron (or
hole) density. This means that the electronic specific heat will show essentially the same
behavior, with the γ coefficient being affected by the electron density but also by the
effective mass (which affects εF ).
On the other hand, thermal properties of intrinsic semiconductors are strongly affected
by the energy gap. Since the system is insulating at zero temperature, the carrier density
is due to thermal excitation of electrons from the valence band to the conduction band.
Utilizing one of the usual notations, we denote by nc the electron density in the conduction
band, and by pv the hole density in the valence band. The gap energy will be denoted as
Eg, being related to the lower and upper limits of the two bands by

Eg = εc − εv . (24)
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From what we have seen for metals, we can write

nc(T ) =
∫ ∞
εc

dεDc(ε)f(ε) =
∫ ∞
εc

dεDc(ε)
1

e(ε−µ)/kBT + 1 , (25)

where Dc(ε) is the density of states in the conduction band. Since the probability of a
state of energy ε to be occupied is given by the Fermi function f(ε), the probability of this
state empty being empty is 1− f(ε). Then,

pv(T ) =
∫ εv

−∞
dεDv(ε)

[
1− 1

e(ε−µ)/kBT + 1

]
=
∫ εv

−∞
dεDv(ε)

1
e(µ−ε)/kBT + 1 , (26)

where Dv(ε) is the valence-band DOS, and the last equality derives from a simple algebraic
development.
The chemical potential must be near the middle of the gap, since the occupation of states
in both bands should be treated in an equal footing. Typical gap widths are of the order of
1 eV, which means that εc− µ ∼ µ− εv � kBT at room temperature. Thus, the following
approximations are valid:

1
e(ε−µ)/kBT + 1 ' e−(ε−µ)/kBT , ε ≥ εc ,

1
e(µ−ε)/kBT + 1 ' e−(µ−ε)/kBT , ε ≤ εv . (27)

We can separate the dependence on the chemical potential, defining quantities that depend
only on characteristics of the two bands,

Nc(T ) =
∫ ∞
εc

dεDc(ε) e−(ε−εc)/kBT ,

Pv(T ) =
∫ εv

−∞
dεDv(ε) e−(εv−ε)/kBT , (28)

and writing

nc(T ) = Nc(T )e−(εc−µ)/kBT ,

pv(T ) = Pv(T )e−(µ−εv)/kBT . (29)

The densities of states Dc(ε) and Dv(ε) can be chosen as having the form of a free-electron
DOS, but with energies measured from the respective band “bottom”, and the electron
mass replaced by the corresponding effective mass.
From Eq. (29) we obtain the product

ncpv = NcPv e−Eg/kBT , (30)

which is independent of the chemical potential. Since we are dealing with the intrinsic
case, we must have nc = pv ≡ ni, obtaining the intrinsic carrier density (per band)

ni(T ) = [Nc(T )Pv(T )]1/2 e−Eg/2kBT . (31)
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The chemical potential may be obtained by imposing the equality of ni, Eq. (31), with pv
as given by Eq. (29), which yields

µ = εv + 1
2Eg + 1

2kBT ln
(
Pv
Nc

)
. (32)

Using free-electron-like densities of states for both bands, with the corresponding effective
masses, we have (EXERCISE)

µ = εv + 1
2Eg + 3

4kBT ln
(
mv

mc

)
. (33)

Note that this result confirms that the chemical potential is near the middle of the gap,
approaching this position as T → 0.


