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FIP10601 – Text 2

Symmetries

We will suppose that the student has already completed an undergraduate course typically
denominated Introduction to Solid State Physics, in which a substantial time is usually
spent in describing crystal structures observed in common crystalline solids. We will just
briefly summarize the most important concepts that were presented there, but we will go
deeper into the underlying symmetries and their relevance to the theoretical description of
such solids.

A crystal structure is a representation of how the positional ordering of the constituent
atoms of a solid looks like. It consists in an underlying lattice of abstract points, and
a set of atoms (called basis) that is associated to each lattice point. As mentioned in
Text 1, observation of crystal structures of real solids is usually done via x-ray or neutron
diffraction.

Apart from a scaling factor related to interatomic distances, there is a finite number of
possible crystal structures. For three-dimensional (3D) solids, only 14 different lattices
are needed, which are called Bravais lattices. They are divided in 7 crystal systems :
cubic, tetragonal, orthorhombic, monoclinic, triclinic, hexagonal, and trigonal. Such a
classification is heavily based on the concept of symmetry. Without going into details about
the crystal systems, we will focus to some extent on the general relevance of symmetries
to the properties of crystalline solids.

Let us begin by the formal definition of a Bravais lattice as a discrete but infinite set of
vectors {R}, which can be written as combinations of three (for space dimension d = 3)
non coplanar primitive vectors, i.e,

R = n1a1 + n2a2 + n3a3 , (1)

where n1, n2, and n3 are integer numbers.

The set of lattice vectors also define a set of symmetry operations called translations, since
a rigid displacement of the lattice by any of these vectors will take any lattice point to a
place previously occupied by another one, thus leaving the lattice unchanged. We see that
(discrete) translation symmetry is inherent to all Bravais lattices, and consequently to all
crystal structures.

In addition to translations, there are other operations that leave a lattice (or a crystal
structure) invariant: rotations, reflections, inversion, etc. It is easy to figure out that
only translations are sure to be symmetry operations of both a crystal structure and its
underlying Bravais lattice. Other symmetries of the lattice may not apply to the crystal
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structure, depending on the local symmetries of the basis. We will mostly focus on lattice
symmetries.

The symmetry operations of a system (or object) form a group, in the mathematical sense
of the term: the group is closed with respect to product (meaning a sequential application
of two operations), the product is associative, there exists an identity operation, and each
operation has an inverse.

The set of all symmetry operations of a particular lattice (or crystal structure) is its space
group. Lattice translations are a subgroup of the space group, i.e., a subset of the group
operations that is a group in itself. The other operations mentioned above form another
subgroup called the point group, defined as the set of all symmetry operations that leave
at least one point fixed in space. There are 7 different point groups for the 3D Bravais
lattices (which define the 7 crystal systems), and 14 space groups (corresponding to the
14 lattices). Just to mention, all possible 3D crystal structures are divided in 32 point
groups and 230 space groups.

The consequences of symmetries to the properties of a system are more easily disclosed
using Group Theory applied to the space group (or its subgroups). For this reason, we
will review some principles of Group Theory. This review is not meant to be complete nor
rigorous, but will seek to highlight the main points that will allow us to understand the
effect of symmetry on physical properties of crystalline solids.

Elements of Group Theory (through an example)

Instead of using a realistic Bravais-lattice group (as, for example, the point group of cubic
lattices, with 48 operations), we consider a simpler group, composed by only 6 operations:
the 6 permutations of 3 identical objects or, equivalently, of the three coordinates of a
vector (x, y, z) in three-dimensional space. This group is usually referred to as S3, which
is a particular case of Sn, the group of permutations of n objects. We will write the group
as

S3 = {1, a, b, c, d, e} . (2)

� The operation denoted by 1 is the identity :

1 (x, y, z) = (x, y, z) . (3)

� Operations a and b are cyclic permutations:

a (x, y, z) = (z, x, y) ,

b (x, y, z) = (y, z, x) . (4)

� Operations c, d, and e are pair permutations:

c (x, y, z) = (x, z, y) ,

d (x, y, z) = (z, y, x) ,

e (x, y, z) = (y, x, z) . (5)
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It can be easily verified that any two operations in sequence are equivalent to another
operation of the same set, i.e., the set of operations is closed to the product. For example,

(ab) (x, y, z) = a [b (x, y, z)] = a (y, z, x) = (x, y, z) = 1 (x, y, z) . (6)

In addition to providing an example of product (ab = 1), the above equation shows that b
is the inverse of a.

The results of all possible products of two elements can be organized in the group’s mul-
tiplication table, shown below.

1 a b c d e
1 1 a b c d e
a a b 1 e c d
b b 1 a d e c
c c d e 1 a b
d d e c b 1 a
e e c d a b 1

(7)

As we mentioned before, a subset of the group’s operations forms a subgroup if the
operations of this subset form a group. For example, {1, a, b, } is a subgroup of S3, as
shown in the multiplication table below, extracted from the above table.

1 a b
1 1 a b
a a b 1

b b 1 a

(8)

Operations and operators

Since we will be dealing with a quantum system, it is relevant to know what are the effects
of symmetry operations on the states of the system, which are described by wave-functions
in a Hilbert space. To any symmetry operation (acting on the space of coordinates) one
can associate an operator acting on a space of functions.

We define the action of a symmetry operator A associated with the operation a by

Aψ(r) = ψ(a†r) . (9)

Given that symmetry operations are orthogonal transformations, a† is the inverse of a.
We can understand why the inverse operation is used if we think of a rotation in space:
rotating a “vector” (in this case, the wave function) in one sense is equivalent to rotating
the coordinate system in the opposite sense.

Operators that perform transformations must be unitary in order to preserve the func-
tion’s norm. Thus, symmetry operations are unitary transformations, i.e., A−1 = A†, in
agreement with a−1 = a†.
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In our example (group S3), we define the group of operators

S3 = {I, A,B,C,D,E} , (10)

where I corresponds to the identity operation.

The groups S3 and S3 are said to be isomorphic, since there is a two-way correspondence
between their elements, and both groups have the same multiplication table. This can be
seen by the following example,

AC ψ(r) = Aψ(c†r) = ψ(c†[a†r]) = ψ([ac]†r) = ψ(e†r) = E ψ(r) , (11)

where it is evident that AC = E in correspondence to ac = e.

Invariant manifolds

A set of n linearly independent functions defines a manifold to which these functions
provide a basis, since any linear combination of functions of this set also belongs to the
manifold.

To illustrate, let us choose

ψ1(x, y, z) =
1

(2π)3/2
ei(−x+y+z) ,

ψ2(x, y, z) =
1

(2π)3/2
ei(x−y+z) ,

ψ3(x, y, z) =
1

(2π)3/2
ei(x+y−z) . (12)

These functions are orthonormal in a cube of edge 2π, which means that∫ 2π

0

dx

∫ 2π

0

dy

∫ 2π

0

dz ψ∗i (x, y, z)ψj(x, y, z) = δij , i, j = 1, 2, 3 . (13)

They define a three-dimensional manifold which we will call M .

The following table shows the results of operating with the elements of S3 on the basis
functions {ψ1, ψ2, ψ3} of M .

I ψ1 = ψ1 Aψ1 = ψ2 B ψ1 = ψ3 C ψ1 = ψ1 Dψ1 = ψ3 E ψ1 = ψ2

I ψ2 = ψ2 Aψ2 = ψ3 B ψ2 = ψ1 C ψ2 = ψ3 Dψ2 = ψ2 E ψ2 = ψ1

I ψ3 = ψ3 Aψ3 = ψ1 B ψ3 = ψ2 C ψ3 = ψ2 Dψ3 = ψ1 E ψ3 = ψ3

(14)

Note that the application of any operator of S3 on any function of M results in another
function belonging to M . It is then said that M is an invariant manifold of S3.
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Manifold decomposition

In many cases a manifold can be decomposed into smaller manifolds. If this is possible, the
original manifold is said to be reducible. The decomposition is performed by choosing an
appropriate new basis.

For our manifold M , we can define, for example, the following combinations of the functions
given in Eq. (12):

χ1 =
1√
3

(ψ1 + ψ2 + ψ3) ,

χ2 =
1√
2

(ψ2 − ψ3) ,

χ3 =
1√
6

(2ψ1 − ψ2 − ψ3) . (15)

It is easy to show that

(1) the set {χ1, χ2, χ3} is also orthonormal on a cube of edge 2π (EXERCISE 1);

(2) χ1 defines a one-dimensional invariant manifold of S3 (EXERCISE 2);

(3) {χ2, χ3} defines a two-dimensional invariant manifold of S3 (EXERCISE 3).

Thus, it was possible to decompose the three-dimensional invariant manifold M into two
other invariant manifolds (of lower dimensions) by the basis change {ψi} → {χi}.

Matrix representations

If A is an operator belonging to a (generic) group G, one can construct a matrix repre-
sentation of A by choosing a basis {ψi} in an invariant manifold of G, and evaluating the
matrix elements

Aij ≡ 〈ψi|A|ψj〉 . (16)

Suppose that three operators of G obey the product rule C = AB. Taking into account
that the basis {ψi} is orthonormal and complete, i.e.,

n∑
i=1

|ψi〉〈ψi| = 1 , (17)

we have

Cij = 〈ψi|C|ψj〉 = 〈ψi|AB|ψj〉 =
∑
l

〈ψi|A|ψl〉〈ψl|B|ψj〉 =
∑
l

AilBlj , (18)
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which is the usual rule of matrix product (C = AB). Therefore, the set of matrices
representing operators belonging to G forms a group, which we will call G, with the
same product rule of the group G, thus being a matrix representation of this group.

If there is a one-to-one correspondence between the group of operators and the group of
matrices that represent them, we say that these groups are isomorphic. If the number
of operators of G associated with the same matrix of G is greater than one, we say that
G is homomorphic to G. In the case of isomorphism, the group representation is said to
be faithful. To each representation there are associated basis functions, which are nothing
but a set of functions defining a basis for the corresponding invariant manifold.

From the above definition of matrix representation, it is easy to see that any group has
a one-dimensional representation in which all group members are represented by the
number 1. It is called the identity representation (or trivial representation). Any func-
tion that is invariant under all operations of the group may be a basis function for this
representation.

If an invariant manifold M of a group G is reducible, the matrices of a representation of
G in this manifold can be brought to a block-diagonal form, each block corresponding
to an irreducible representation (often shortened to irrep).

Classes

If three operators, A, B and X, of a group G satisfy the relation

B = XAX† , (19)

then A and B belong to the same class . Note that, by this definition, the identity element
constitutes a class by itself.

As the trace of a matrix is invariant under a unitary transformation, all elements of the
same class have identical traces in a given representation. In Group Theory, traces are
called characters. So, the character is a property of a class (not of a single element), but
depends on representation.

Some theorems (for finite groups)

We present the following theorems as tools to analyze groups that we might study. Formal
demonstrations can be found in textbooks of Group Theory.

Theorem 1 - The number of irreducible representations of a group is equal to the number
of classes.
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Theorem 2 - The dimensions (nα) of all the irreducible representations (α) of a group
with N elements satisfy the sum rule∑

α

n2
α = N . (20)

Theorem 3 - The following orthogonality relations hold for the characters (χ) of the
irreducible representations of a group:∑

A

NA χ
∗
α(A)χβ(A) = N δαβ , (21a)

∑
α

χ∗α(A)χα(A′) =
N

NA

δA,A′ , (21b)

where NA is the number of elements belonging to class A.

In fact, Eq. (20) is contained in Eq. (21b) when A = A′ = E, where E is the usual notation
for the identity class (we did not follow this usage in our S3 example!).

If we know the elements of a group and which classes they define, these theorems allow to
determine the number of irrep’s, and the character of each class in each irrep. Usually,
these characters are arranged in a character table, with columns labeled by class and rows
by irrep. It is usual to add an extra column containing some simple possible basis functions
for each irrep.

Relationship with energy eigenfunctions

Given a physical system described by a Hamiltonian H, the system’s symmetry group (G)
is composed by all the independent unitary operators that leave the Hamiltonian invariant.
Therefore, for any A ∈ G,

AHA† = H ⇒ [A,H] = 0 . (22)

If ψ is an energy eigenfunction corresponding to the eigenvalue E, i.e., Hψ = Eψ, then

AHψ = EAψ ⇒ H(Aψ) = E(Aψ) . (23)

Therefore, Aψ is also an energy eigenfunction corresponding to the same eigenvalue.

We can define a manifold M whose basis consists of a set {ψ1, ψ2, . . . , ψn} of linearly
independent energy eigenfunctions corresponding to an eigenvalue E, n times degenerate.
Any linear combination

φ =
n∑
i=1

ciψi (24)
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is an eigenfunction of H corresponding to the same eigenvalue. This also holds for a
function Aφ, where A is any operator of the symmetry group, since

H(Aφ) = AHφ = AEφ = E(Aφ) . (25)

So, M is an invariant manifold of G.

In summary, the eigenfunctions of the Hamiltonian H of any quantum system can be cho-
sen to belong to irreducible invariant manifolds of the system’s symmetry group, therefore
providing basis functions for its irreps.

As matrix elements of the Hamiltonian between eigenfunctions belonging to distinct irreps
are null, the matrix representation of the Hamiltonian in the whole Hilbert space can be
made block diagonal, each block corresponding to an irrep. The same applies to matrix rep-
resentations of any operators that commute with the Hamiltonian (including the operators
of the symmetry group).

The dimension of a given irrep determines the degree of essential degeneracy of the
corresponding energy eigenvalue. Essential means that the degeneracy is mandatory,
being a consequence of symmetry properties. In contrast, equality between eigenvalues
corresponding to distinct irreducible representations characterizes an accidental degen-
eracy . It must be due to a special choice of parameter values in the Hamiltonian that
effectively changes its symmetry group.

In Text 3 we will use the generic concepts reviewed here to analyze electron states in
crystalline solids in the independent electron approximation.


