Structural anomalies for a three dimensional isotropic core-softened potential
Alan Barros de Oliveira, Paulo A. Netz, Thiago Colla, and Marcia C. Barbosa

Citation: The Journal of Chemical Physics 125, 124503 (2006); doi: 10.1063/1.2357119
View online: http://dx.doi.org/10.1063/1.2357119
View Table of Contents: http://scitation.aip.org/content/aip/journal/jcp/125/12?ver=pdfcov
Published by the AIP Publishing

Articles you may be interested in
Effect of attractive interactions on the water-like anomalies of a core-softened model potential

Correctness of certain integral equation theories for core-softened fluids

Thermodynamic, dynamic, structural, and excess entropy anomalies for core-softened potentials

Phase separation of a binary two-dimensional core-softened fluid

Thermodynamic and dynamic anomalies for a three-dimensional isotropic core-softened potential
Structural anomalies for a three dimensional isotropic core-softened potential

Alan Barros de Oliveira  
*Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil*

Paulo A. Netz  
*Instituto de Química, Universidade Federal do Rio Grande do Sul, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil*

Thiago Colla and Marcia C. Barbosa  
*Instituto de Física, Universidade Federal do Rio Grande do Sul, Caixa Postal 15051, 91501-970 Porto Alegre, Rio Grande do Sul, Brazil*

(Received 2 August 2006; accepted 29 August 2006; published online 25 September 2006)

Using molecular dynamics simulations we investigate the structure of a system of particles interacting through a continuous core-softened interparticle potential. We found for the translational order parameter \( t \) a local maximum at a density \( \rho_{t, \text{max}} \) and a local minimum at \( \rho_{t, \text{min}} > \rho_{t, \text{max}} \). Between \( \rho_{t, \text{max}} \) and \( \rho_{t, \text{min}} \), the \( t \) parameter anomalously decreases upon increasing pressure. For the orientational order parameter \( Q_6 \), a maximum was observed at a density \( \rho_{Q, \text{max}} < \rho_{Q, \text{max}} < \rho_{t, \text{min}} \). For densities between \( \rho_{Q, \text{max}} \) and \( \rho_{t, \text{min}} \), both the translational (\( t \)) and orientational (\( Q_6 \)) order parameters have anomalous behavior. We know that this system also exhibits density and diffusion anomalies. We found that the region in the pressure-temperature phase diagram of the structural anomaly englobes the region of the diffusion anomaly that is larger than the region limited by the temperature of maximum density. This cascade of anomalies (structural, dynamic, and thermodynamic) for our model has the same hierarchy as that observed for the simple point charge/extended water.


I. INTRODUCTION

Water is the most important substance for life: It cools, carries, stabilizes, reacts, lubricates, dilutes, and much more. Despite of this, many of its characteristics are not well understood. While most liquids contract upon cooling, water expands below \( T=4 \) °C at ambient pressure.\(^1\) This is known as the density anomaly of water. Heating the water from \( T = 0 \) °C up to \( T=4 \) °C a competition between open low density and a closed high density structure takes place. The gain of thermal energy breaks a considerable number of hydrogen bonds, which leads the open low density structure to become unstable in relation to the closed high density structure. So, the system contracts.

Density anomaly is not the only one; far from it, the literature reports 41 anomalies for water.\(^2\) Not only the thermodynamics of water is anomalous but also its dynamics. Commonly the materials’ diffusivity decreases with increasing pressure. Liquid water has an opposite behavior in a large region of the phase diagram.\(^3-11\) An increase in pressure disturbs the structure by inclusion of interstitial molecules that share a hydrogen bond with another one. As a result, the bond is weakened and the molecule is free to move. The shared bond breaks and the molecule by means of a small rotation connects to another molecule, enabling the translational diffusion.\(^3\)

Water is not an isolated case. There are other examples of tetrahedrally bonded molecular liquids such as silica and silicon\(^12,13\) that exhibit thermodynamic and dynamic anomalies. Thermodynamic anomalies were also found in liquid metals\(^14\) and graphite.\(^15\) Unfortunately, a closed theory giving the relation between the form of the interaction potential and the presence of the anomalies is still missing.

It is reasonable to think that the structure and anomalies are deeply related. Establishing the connection between structure and the thermodynamic and dynamic behavior of water is a fundamental step towards understanding the source of the anomalies. At this point a question emerges: how can we define (measure) structure in liquids? Errington and Debenedetti\(^16\) proposed two simple metrics: a translational order parameter\(^16\) \( t \), that measures the tendency of pairs of molecules to adopt preferential separations, and the orientational order parameter\(^16,17\) \( q \), quantifying the extent to which a molecule and its four nearest neighbors assume a tetrahedral arrangement. For other crystal configurations one may use the orientational order parameter introduced by Steinhardt et al.,\(^18\) \( Q_6 \), which depends on the number of nearest neighbors taken into account for each molecule. For a completely uncorrelated system (ideal gas) both \( t \) and \( q \) must to be zero and \( Q_6 \) is equal to 1 over the square of the number of neighbors. For a crystal, \( t \), \( q \), and \( Q_6 \) are large. Torquato et al.\(^19\) introduced a systematic way to study the structural order in liquid mapping state points into the \( t-q \) plane. They

---

\(^4\)Electronic mail: marcia.barbosa@ufrrgs.br
refer to it as an order map. Errington and Debenedetti used the order map to investigate structural order in simple point charge/extended (SPC/E) water.  

For normal liquids, \( t \) and \( q \) increase upon compression, because the system tends to be more structured. It was found that in SPC/E water both \( t \) and \( q \) decrease upon compression in a certain region of the pressure-temperature (\( P-T \)) phase diagram.  

Performing molecular dynamics simulations, Errington and Debenedetti and Netz et al. showed that in SPC/E water the thermodynamic and dynamic anomalies form nested domes in the \( P-T \) phase diagram, where the diffusion anomaly lies outside the density anomaly. Additionally, Errington and Debenedetti showed that the structurally anomalous region englobes the diffusion and density anomaly regions.  

Several models of water for computer simulations have been proposed, with three, four, or five localized partial charges, some of them having Lennard-Jones interaction centers in the oxygens and hydorgen, while others only in the oxygens. A considerable number of these approaches reproduce many anomalies present in liquid water. However, these models are complicated, which makes difficult to understand the physics behind the anomalies. In this sense, isotropic models are the simplest framework to understand the physics of liquid state anomalies. Moreover, the use of an effective potential is particularly suitable for extending our conclusions for more complex fluids. From the desire of constructing a simple two-body isotropic potential, capable of describing waterlike anomalies, a number of models in which single component systems of particles interact via core-softened (CS) potentials have been proposed. They possess a repulsive core that exhibits a region of softening where the slope changes dramatically. This region can be a shoulder or a ramp.  

In the shoulder case, the potential consists of a hard core, a repulsive shoulder, and, in some cases, an attractive square well. The potential has a change in the slope at short-ranged distances. In two dimensions, such potentials have thermodynamic and diffusion anomalies. In three dimensions, no dynamic and thermodynamic anomalies were reported.  

In the ramp case, the interaction potential has two competing equilibrium distances, defined by a repulsive potential. In some cases an attractive part is included. In two dimensions, there are thermodynamic anomalies in such potentials. In three dimensions, these potentials exhibit not only thermodynamic anomalies but also dynamic and structural anomalies.  

Notwithstanding the progresses described above, a model in which both the potential and the force are continuous functions and that exhibits all the thermodynamic and dynamic anomalies like the ones present in water is still missing. In this paper, we check if a ramplike potential previously studied by us has not only density and diffusion anomalies but also structural anomalies. We will verify if the regions in the pressure-temperature phase diagram of thermodynamic and dynamic anomalies are inside the region of structural anomalies as in SPC/E water. The hierarchy between the anomalies in such simple model is an important step in order to understand the mechanism of the anomalies.  

The remainder of this paper goes as follows. In Sec. II the model is introduced. In Sec. III the methods for calculating structural order in liquids are presented. Results for the structural anomalies and the order map obtained from molecular dynamics simulations are shown in Sec. IV. Conclusions about the relation between the locus of the thermodynamic, dynamic, and structural anomalies and about the order map are presented in Sec. V.  

II. THE MODEL

The model we study consists of a system of \( N \) particles of diameter \( \sigma \) interacting through an isotropic effective potential given by

\[
U^* (r) = 4 \left[ \left( \frac{\sigma}{r} \right)^{12} - \left( \frac{\sigma}{r} \right)^6 \right] + a \exp \left[ -\frac{1}{c^2} \left( \frac{r-r_0}{\sigma} \right)^2 \right],
\]

where \( U^*(r) = U(r)/\epsilon \). The first term of Eq. (1) is a Lennard-Jones potential of well depth \( \epsilon \) and the second term is a Gaussian centered on radius \( r = r_0 \) with height \( a \) and width \( c \). Depending on the choice of the values of \( a, r_0, \) and \( c \), this potential assumes several shapes ranging from a deep double well potential to a repulsive shoulder.  

Recently, using molecular dynamics simulations and integral equation theory, we have studied the potential [Eq. (1)] setting \( a=5, r_0/\sigma=0.7, \) and \( c=1 \) (see Fig. 1). Here, we use the same parameters (as in the previous study). It is interesting to note that close to the core (\( r/\sigma \approx 1 \)) this potential experiences an unusual change of slope, weakening the repulsive force between the particles.
III. THE METHODS

A. Translational order parameter

The translational order parameter of a system of particles of density $\rho=N/V$, where $N$ is the number of particles and $V$ is the volume of the system, is defined as $^{8,13,16}$

$$t = \int_0^{r_c} |g(\xi) - 1| d\xi,$$  

(2)

where $\xi = r^{1/3}$ is the interparticle distance $r$ divided by the mean separation between pairs of particles $\rho^{1/3}$. $g(\xi)$ is the radial distribution function, where $g$ is proportional to the probability of finding a particle at a distance $\xi$ to another particle placed at the origin. $\xi_c$ is a cutoff distance. In this work, we use $^{41} \xi_c = \rho^{1/3}L/2$, where $L = V^{1/3}$. For a completely uncorrelated system (ideal gas) $g=1$ and $t$ vanishes. In a crystal, a translational long order ($g \neq 1$) persists over long distances, making $t$ large.

B. Orientational order parameter

For the orientational order parameter introduced by Steinhardt et al. $^{18}$ we follow the strategy introduced by Yan et al. $^{40}$ We define $k$ vectors, $r_{ij}$, connecting the particle $i$ with its $k$ nearest neighbors $j$. Each vector $r_{ij}$ is a “bond.” Polar ($\phi_{ij}$) and azimuthal ($\theta_{ij}$) angles with reference to an arbitrary axis may be associated to each bond $r_{ij}$ and the spherical harmonics $Y_{lm}(\theta_{ij}, \phi_{ij})$ may be calculated. After computing the average of $Y_{lm}(\theta_{ij}, \phi_{ij})$ over the $k$ bonds, namely,

$$\langle Y^i_{lm} \rangle = \frac{1}{k} \sum_{j=1}^{k} Y^i_{lm}(\theta_{ij}, \phi_{ij}),$$  

(3)

one can evaluate the orientational order parameter $^{8,13,16,19,48,49}$ associated to each particle $i$, $Q_i^* = \left[ \frac{4\pi}{2\ell + 1} \sum_{m=-\ell}^{\ell} |\langle Y^i_{lm} \rangle|^2 \right]^{1/2}$. For characterizing the local order $^{50}$ of the system

$$Q_6 = \frac{1}{N} \sum_{i=1}^{N} Q^*_i$$  

(5)

was used. $^{40,41}$ which is the mean value of $Q^*_i$ over all particles of the system. The $Q_6$ parameter assumes its maximum value for a perfect crystal and decreases as the system becomes less structured. For a completely uncorrelated system (ideal gas) $Q^*_6 = 1/\sqrt{k}$. For a crystal, the $Q_6$ value depends on the specific crystalline arrangement and the number of neighbors taken into account. For example, for the face centered cubic (fcc) with its 12 first neighbors ($k=12$), we have $Q^*_6 = 0.574$. For a body centered cubic (bcc), which have only 8 nearest neighbors, $Q^*_6 = 0.628$. Note that if we include not 8 but 14 neighbors for calculating $Q^*_6$, we have $Q^*_6 = 0.510$.

For the potential given by Eq. (1), the expected crystalline configuration at the ground state for low densities is the hexagonal close packing (hcp), which have 12 first neighbors (see Sec. IV for more details). In this work we used $k=12$ in Eq. (3). For the hcp crystal, $Q^*_6 = 0.484$.

IV. RESULTS FROM SIMULATIONS

We performed molecular dynamics (MD) simulations in the canonical ensemble using 500 particles in a cubic box with periodic boundary conditions, interacting with the potential Eq. (1). The parameters employed were $a=5$, $r_0/\sigma = 0.7$, and $c=1.0$. The cutoff radius was set $^{41}$ to $3.5\sigma$. In order to keep the temperature fixed, the Nosé-Hoover $^{52}$ thermostat was used with the coupling constant $q_{NH}=2$. Pressure, temperature, and density are shown in dimensionless units,

$$P^* = \frac{P \sigma^3}{\epsilon},$$  

(6)

$$T^* = \frac{kt}{\epsilon},$$  

(7)

$$\rho^* = \rho \sigma^3.$$  

(8)

FIG. 2. The dimensionless configurational energy per particle for the several crystal structures considered: face centered cubic (fcc), body centered cubic (bcc), simple cubic (sc), simple hexagonal (sh), hexagonal closest packing (hcp), and rhombohedral-60° (rh60). We see that the hcp has the lower configuration energy per particle for densities $\rho^* \approx 0.107$ (see inset). Hence, the expected structure for our model at $T=0$ is the hcp for $\rho^* \leq 0.107$. For $0.107 \approx \rho^* \approx 0.187$ the bcc phase has the lower configurational energy between those studied (not shown).

FIG. 3. The reduced pressure as a function of the reduced density. The seven isotherms show that the relation between $P^*$ and $\rho^*$ is monotonic.
For our model we found a monotonic behavior for $T$. We see that the hcp conformation is the more stable for crystal at the ground state is the one with lower arrangement. In the canonical ensemble, the most stable behavior is observed for $T$. The line connecting the points is just a guide for the eyes.

The translational and orientational order parameters were calculated over 1 000 000 step MD simulations, previously equilibrated over 200 000 steps. For low temperatures ($T < 0.4$), additional simulations were carried out with equilibration over 500 000 steps, followed by a 2 000 000 step simulation run. The time step was 0.002 in reduced units.

For studying the crystalline structure of our model we consider the expected, following conformations for the ramp potential: simple cubic (sc), bcc, fcc, simple hexagonal (sh), hcp, and the rhombohedral-60° (rh60). Perfect crystals with such conformations were constructed and the configurational energy per particle $u = U / N$ was calculated for each arrangement. In the canonical ensemble, the most stable crystal at the ground state is the one with lower $u$. From Fig. 2, we see that the hcp conformation is the more stable for densities $\rho \leq 0.107$ (see inset). The bcc conformation is the more stable one for $0.107 \leq \rho \leq 0.187$ (not shown).

Studying the equation of state pressure against density for our model we found a monotonic behavior for $P(\rho)$. Hence, an increase in pressure means an increase in density, as shown in Fig. 3.

Results for the translational order parameter for the liquid phase can be seen in Fig. 4. While for a normal liquid $t$ increases under compression, for our system this is the case only for high temperatures. For lower temperatures $t$ presents a local maximum at a density $\rho_{t,\text{max}}$ and a local minimum at a density $\rho_{t,\text{min}} > \rho_{t,\text{max}}$ for temperatures $T' < 1.5$. Between $\rho_{t,\text{max}}$ and $\rho_{t,\text{min}}$ an unusual behavior for the translational order parameter is observed: An increase in density induces a decrease in translational order. This behavior can be understood by analyzing the dependence of the radial distribution function (RDF) upon density [see Eq. (2)]. The arrows in Figs. 4 correspond to the density range spanned by Figs. 5(a)–5(c), respectively.

FIG. 4. The translational order parameter $t$ as a function of the density $\rho$. From top to bottom, the 16 isotherms are $T' = 0.25, 0.30, 0.35, 0.40, 0.45, 0.50, 0.55, 0.70, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0$, and $5.0$. The arrows (a), (b), and (c) correspond to the density range spanned by Figs. 5(a)–5(c), respectively. The bold line indicates the isotherm $T' = 1.5$. For $T' > 1.5$ no anomalous behavior is observed for $t$. The line connecting the points is just a guide for the eyes.

Figure 5 shows the RDF for $T' = 0.25$ and several densities: (a) $\rho' = 0.04$, 0.06, 0.07, and 0.08; (b) $\rho' = 0.10, 0.11, 0.12, 0.14$, and 0.16; and (c) $\rho' = 0.18, 0.20, 0.22$, and 0.24. The arrows indicate the directions of increasing $\rho'$ and the dashed line is the reduced interparticle potential shown in Fig. 1 multiplied by a factor of 0.5 just for clarity. From Fig. 5(b) one can explain why this happens. Both an increase of $g(r)$ at $r / \sigma = 1.0$, approximating the RDF to 1 which decreases $|g(r) - 1|$, and a decrease of $g(r)$ in the next peak (close to 2.5) upon compression cause $t$ to decrease. This new peak at about 1 unit corresponds to the position of the hard-core part of the potential. Finally, $t$ returns to increase upon compression for $\rho' > 0.18$. The sharp growth of $g(r)$ at $r / \sigma = 1.0$ above the unity [see Fig. 5(c)] underlies this behavior, indicating that all the particles are pushed together up to their hard cores. This was the same behavior observed for the RDF of the ramp potential. Anomalous variations in $t$ are absent for $T' > 1.5$ because the thermal energy washes out the effect of the repulsive shoulder.

For a normal liquid, it is expected that the orientational order parameter $Q_6$ increases under compression. For our potential, however, a local maximum is detected for $Q_6$ at a density $\rho_{Q,\text{max}}$ in such a way that $\rho_{t,\text{max}} < \rho_{Q,\text{max}} < \rho_{t,\text{min}}$ (see Fig. 6). This means that for densities between $\rho_{Q,\text{max}}$ and $\rho_{t,\text{min}}$ both the structural order parameters $t$ and $Q_6$ have an anomalous behavior, since $t$ and $Q_6$ decrease under increas-
The relation between the several anomalies presented for this potential is shown in Fig. 7. The temperature of maximum densities (TMD) and the diffusivity extrema (DE) lines were obtained from previous work. The TMD line indicates the region of thermodynamic anomaly region, inside which the density increases when the system is heated at constant pressure. The DE lines determine the region of dynamic anomaly. Inside this region, diffusivity increases with increasing density. In this work we determine additional three lines shown in Fig. 7: the curve of t maxima (C), the curve of $Q_6$ maxima (B), and the curve of t minima (A). We call the region between curves A and B the structural anomaly region, inside which both the order parameters $t$ and $Q_6$ become anomalous, namely, decrease with density. Curve B, composed of the $Q_6$ local maxima points, terminates at $T^* = 5.0$, not shown in Fig. 7 for clarity. As the temperature $T^*$ tends to 5.0, the densities for the $Q_6$ maxima loci tend to zero. For $T^* > 5.0$ we have studied the temperatures $T^* = 5.5$, 6.0, 6.5, 7.0, and 8.0 (not shown). For all these temperatures the same qualitative behavior for $Q_6$ was observed: The $Q_6$ parameter has local maxima at $\rho^* = 0$ and global minima at $\rho^* = 0.3$. The ratio between these extrema (local maxima and global minima) does not extrapolate 3.5% in any case. We do not simulate temperatures $T^* > 8.0$.

For the SPC/E water, the region of structural anomalies contains (inside) the region of dynamic anomalies, and the thermodynamic anomaly region lies inside the last one. For silica, also a tetrahedrally bonded molecular liquid, simulations show an inverse order between the structural and dynamic anomaly regions: The diffusion anomaly region englobes the structural anomaly region that englobes the thermodynamic anomaly region. For our model, we see a waterlike cascade of anomaly regions similar to that found for the SPC/E water (see Fig. 7). This suggests that the role played by the structure in our potential, like in water, is determinant for giving rise to the other anomalies.

As discussed in the Introduction, the convenient orientational order parameter for tetrahedral liquids is $q$. It was reported that for SPC/E water the isothermal paths in a $t$-$q$ diagram order map collapse into a single line in the structural anomaly region. This property supports the idea that in water the anomalies in translational diffusion and in rotational mobility are related.

In order to check if $t$ and $Q_6$ are also related in our isotropic model, the order map was also constructed. Figure 8 shows the behavior of $t$ as a function of $Q_6$. The arrows indicate the growth of density for each isotherm. Similar to the results found for the SPC/E water, silica, and for the ramp potential, an inaccessible region for the order map of our model was observed. However, different from the SPC/E water, and similar to the ramp potential, the parameters $t$ and $Q_6$ do not fall into a straight line in the order map for densities and temperatures inside the region of structural anomalies (note in Fig. 8 that $t$ and $Q_6$ develop a two dimensional region in the order map).

V. CONCLUSIONS

Using molecular dynamics simulations we have studied the structure of fluids interacting via a three dimensional
FIG. 8. The $t$-$Q_6$ plane or order map. Each line corresponds to an isotherm and the arrows indicate the direction of density growth. From top to bottom, the isotherms showed here are $T=0.25$, 0.3, 0.35, 0.4, 0.45, 0.5, 0.55, 0.7, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, and 5.0. Unlike the SPC/E water (Ref. 8), the paths formed by the $t$ and $Q_6$ parameters developed a two dimensional region in the order map for temperatures and densities inside the structural anomalous region.

dependent in that region.

Continuous core-softened potential with a continuous force. The translational ($t$) and orientational ($Q_6$) order parameters introduced by Steinhardt et al.\textsuperscript{18} were analyzed in the framework proposed by Yan et al.\textsuperscript{40} to quantify the structure order for an isotropic liquid.

Our model exhibits a region of density anomaly, inside which the density increases as the system is heated at constant pressure, and a region of diffusion anomaly, where the diffusivity decreases with increasing density.\textsuperscript{43} In the pressure-temperature phase diagram, the density anomaly region lies inside the diffusion anomaly one.

Complementary to the thermodynamic and dynamic anomalies, both $t$ and $Q_6$ behave anomalously in a large region of the temperature-density plane as follows. The parameter $t$ has both a local maximum, at a density $t_{\text{max}}$, and a local minimum, at a density $t_{\text{min}}$. For densities in the range $t_{\text{min}} < t < t_{\text{max}}$ the translational order parameter decreases under pressure. For normal liquids the opposite behavior is expected. For the parameter $Q_6$, a maximum at a density $Q_6_{\text{max}}$ between $t_{\text{max}}$ and $t_{\text{min}}$ was observed. Hence, both $t$ and $Q_6$ become anomalous for densities in the range $Q_6_{\text{max}} < Q_6 < Q_6_{\text{min}}$. The loci of the $Q_6$ maxima, $t$ maxima, and $t$ minima were plotted in a temperature-density plane and we showed that the region where $t$ and $Q_6$ behave anomalously encloses the regions of density and diffusion anomalies discussed above. This is the same behavior observed for the SPC/E water.\textsuperscript{8,9} Different from SPC/E water, the parameters $t$ and $Q_6$ do not fall into a straight line in the order map for densities and temperatures inside the structural anomalous region, which suggests that unlike water $t$ and $Q_6$ are independent in that region.

In conclusion, the studied continuous core-softened pair potential, despite not having long-ranged or directional interactions, exhibits thermodynamic, dynamic,\textsuperscript{33} and structural anomalies similar to the ones observed in SPC/E water.\textsuperscript{8,9} Therefore, we can conclude that the presence of anisotropy in the interaction potential is not a requirement for the presence of thermodynamic, dynamic, and structural anomalies.

ACKNOWLEDGMENTS

We thank the Brazilian science agencies CNPq, FINEP, and Fapergs for financial support.

\begin{thebibliography}{10}
\bibitem{Waller} R. Waller, \textit{Essays of Natural Experiments} (Johnson Reprint Corporation, New York, 1964).
\bibitem{amnlies} http://www.lsbu.ac.uk/water/amnlies.html
\bibitem{Dehenedetti} For a recent review, see P. Dehenedetti, J. Phys.: Condens. Matter \textbf{15}, R1669 (2003).
\end{thebibliography}


47 This cutoff was chosen inspired by Refs. 40 and 41. An alternative might have been the distance corresponding to the first or second minimum in g. These different options do not affect the location of \( \rho_{\max} \) and \( \rho_{\min} \).


50 In Refs. 16, 19, 48, and 49 the average of \( Y_{lm} \) is taken over all bonds in the system. Therefore, no “local order” concept exists. On the other hand, in Refs. 8 and 13 the average of \( Y_{lm} \) is taken over the four nearest neighbors, quantifying a tetrahedral local order for the system. The orientational order parameter of this work is based on the idea of local order for each particle, similar to Refs. 8 and 13.

51 We have tested the use of a larger cutoff and it does not affect the results.


53 This new peak may be interpreted as a signal of clustering. In order to check this, some snapshots for \( T=0.25 \) and the range of densities spanned by Fig. 5 were taken. These snapshots (not shown), even displaying a nonrandom distribution of particles, do not show clearly any clustering.