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Abstract

We consider a blend made of two types of polymers, A and B, of di�erent chemical nature.
At high temperature, the homogeneous mixture is cross-linked. As the temperature is lowered,
the two species try to segregate but are kept together by the cross-links. We show that for
inhomogeneous, non-regular and non-permanent cross-links, there is a complete segregation at
low temperatures, if the system is just weakly cross-linked, and partial segregation otherwise.
We also demonstrate that there is no phase transition between the homogeneous phase and the
microphase for non-symmetric systems. Our analysis is checked with the experiment. c© 1998
Elsevier Science B.V. All rights reserved.
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1. Introduction

The phase separation of polymer blends is an interesting problem for practical [1,2]
and fundamental reasons [3–7]. Polymers are present in many materials and the un-
derstanding of their behavior under changes in temperature, pressure or magnetic �eld
becomes quite important. An interesting case is the mixture of two types of poly-
mers, A and B, forming a gel. Usually, chemically di�erent species are not com-
patible in the molten state and, consequently, at low temperature this system segre-
gates in two regions, one rich in A and another rich in B. This actually happens
for some polymer mixtures where the chemical groups forming one polymer do not
react with the compounds forming the monomers of the other. However, for most
mixtures this is not the case. If the two types of polymers are brought into contact
at high temperatures where the entropic free energy guarantee their coexistence, the
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monomers of polymer A react with the monomers of B forming cross-links [1,2]. When
this system is cooled, a competition between the natural tendency for phase separa-
tion and the elasticity of the network that resists this separation is established. As a
result of this competition, there is a formation of microdomains alternatively rich in
A and in B, which is called a microphase [4]. The case of a regular and strongly
cross-linked mixture of two species of polymers, A and B, where the polymers are
considered to be symmetric and with the same degree of polymerization, N (the num-
ber of monomers in each chain), was studied by de Gennes [4]. He found that the size
of each domain is given by �∝ a

√
n where n is the number of monomers between

two successive cross-links and where a is the size of each monomer. In his approach,
the position of each cross-link does not uctuate in space. Besides, since they were
homogeneously distributed, n is �xed for the whole gel. From his analysis, one obtains
that the transition between the homogeneous phase and the microphase occurs at a
critical temperature given by Tc= T0=(1 +

√
6N=n) that is lower than the temperature

T0 where complete segregation would have taken place [3,4]. For weakly cross-linked
mixtures, the trapped entanglements have to be taken into account [5]. When the num-
ber of monomers between two successive cross-links becomes greater than the number
of monomers between two successive entanglements, ne, it is the repetition mechanism
that leads to the critical behavior and, consequently, the size of the microphase is
given by �∝ a

√
ne [5].

This is the scenario for the phase behavior of these mixtures when the cross-
links are permanent, regularly distributed and �xed in space. In this paper, we
will consider a mixture of two chemically di�erent polymers, A and B, not com-
patible in the molten state and forming non-permanent, not regularly distributed
and mobile cross-links. The chemical di�erences between monomers A and B means
that regions rich in A and regions rich in B are not symmetric and that the two
species exhibit di�erent chemical potentials. In usual critical systems, this does not
signi�cantly change the phase diagram. However, in this particular case, it leads to
the formation of two distinct microphases and to the absence of a phase transition
between the homogeneous and the microphases. Another e�ect that we are also tak-
ing into account is that the cross-links are not permanent. Physically, this is
relevant for interpenetrating gels where the chemical bonds open and reconnect again.
In this sense, the cross-links do not di�er from the entanglements that control the
physics of non-cross-linked mixtures. Indeed the mobility of the cross-links weakens
the elasticity of the network and increases the overall tendency for phase-separation.
We will also relax the constraint of regularity. A uniform distribution of cross-links
is a good approximation just for very strong gels, where almost all the monomers
are cross-linked [4,5]. In real systems, the cross-links are not uniformly distributed
along the gel but according to a distribution that di�ers from system to system.
We will represent these inhomogeneities in the cross-links using a Poisson distribu-
tion. In the next section, we obtain the phase diagram associated with our model
(that represents a generalization of de Gennes’s approach).
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2. Phase diagram

In order to investigate the melt of a non-compatible and non-cross-linked mixture of
polymers A and B, one can use the Landau–Ginsburg–Wilson–de Gennes Hamiltonian
that contains the entropic free energy associated with the mixing of the two species
and a term related to the repulsion between the two types of polymers [3,4,8–10]

�H0 =
∫

d3r
{
a2
(∇�(r))2

48
+

t
2
�(r)2 + u�(r)4 − h(r)�(r)

}
; (1)

where a is the size of one monomer. In the network, the average concentrations of the
two species, 〈�A(r)〉 =0:5 + 〈l(r)〉 and 〈�B(r)〉 =0:5− 〈l(r)〉 are �xed but can have
local uctuations associated with �(r) by

�A(r)= 1
2 (1 + l(r) + �(r)) (2)

and

�B(r)= 1
2 (1− l(r)− �(r)) : (3)

For a symmetric medium, l(r)= 0, the di�erence between the chemical potentials of
the two species also vanishes and, since the linear term in Eq. (1) does depend on l(r)
and on the chemical potentials, h(r)= 0. In this case, the phase diagram exhibits a high
temperature disordered phase where �(r)= 0, which means that the two species are
mixed at a low-temperature ordered phase, where �(r) 6=0, which means that the two
species are separated. We are going to consider a non-symmetric medium for which
〈l(r)〉 6=0 and where the two chemical potentials di�er and so h(r) 6=0.
Despite the chemical di�erences between the two species, we allow the A and B

polymers to make cross-links. To account for the elastic forces due to the cross-links,
besides the terms in Eq. (1), one has to introduce one new term in Eq. (1). For �nding
this contribution, we will use the electrostatic description proposed by de Gennes [4]
that goes as follows. In a dielectric the negative and positive charges are tied together
but can be displaced. This leads to the appearance of a polarization. Similarly, in
polymer mixtures, the monomers A and B are linked but when they are not �xed, a
small displacement of their center of masses leads to an elastic “polarization” given
by

P=
1
V

(∑
i∈A

ri −
∑
j∈j

rj

)
; (4)

where ri is the position of the ith monomer at a polymer of type A, rj is the position
of the jth monomer of type B, and V is the total volume of the system. As in the
electrostatic case, polarization and charge are not independent quantities. Then elasticity
and volume fraction of each species are also related by

∇ · P=�(r) + l(r) : (5)
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Now, using the above description, one has to add to the Hamiltonian Eq. (1) an
elastic contribution associated with the cross-links. For simplicity, we assume that this
term has a quadratic form that resembles the energy of a spring system, namely,

�Hp=
∫

d3r
C(r)P(r)2

2
; (6)

where here C(r) is the internal rigidity. Within de Gennes approach, this quantity
is a constant and given by C =36=(na2). In our model, however, the cross-links are
not homogeneous. Inhomogeneities in the cross-links can be taken into account by
assuming that the elastic constant is a function of the position [8,9], given by

C(r)=C0
∑
ri

�(r − ri) ; (7)

where the vectors {ri} correspond to coordinates of Nc particles randomly distributed
in the volume V . These Nc particles are actually the number of cross-links that are so
far distributed according to a Poisson distribution characterized by

〈C(r1)C(r2)〉 =C0 〈C(r1) :〉 �(r1 − r2) : (8)

Since the cross-links can open and close, the disorder is assumed to be annealed.
Consequently, the resulting e�ective Hamiltonian �He� ≡ �H0 + 〈�Hp〉 is given by

�He� = �H0 + g−1
∫

d3r[1− eC0P(r)
2=2] ; (9)

where g−1 =Nc=V . Then, one has to use the constraint, Eq. (5), in order to eliminate
P from the above Hamiltonian. Since l(r) is assumed to be small, its contribution in
Eq. (5) just leads to a shift in the linear term hq in the expression for He� . Then,
the thermodynamic behavior of the system is all contained in the Helmoltz free en-
ergy, �Fe� = − ln Ze� , where Ze� is the partition function associated with the e�ective
Hamiltonian He� . The expression for Fe� can be evaluated at the mean-�eld level by
taking the saddle-point approximation of the integral related to the partition function.
This approximation leads to an e�ective free energy given by

�Fe� = 1
2

[
t +

(qca)2

24

]
 qc −qc + u 2qc 

2
−qc − h−qc qc + g[1− e−cg qc  −qc =(2q

2
c)] ;

(10)

where we have Fourier transformed Ze� . The expressions for  qc and qc are given by
the saddle-point equations

@�He�
@�(q)

∣∣∣∣
�q= qc ; q=qc

=
[
t +

(qca)2

24

]
 −qc + 4u 

2
−qc qc − h−qc

+
c
q2c

 −qce
−cg qc  −qc =(2q

2
c); (11)
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and

@�He�
@q

∣∣∣∣
�q= qc ; q=qc

= a2
qc

24
 qc −qc −

c
q3c

e−cg qc  −qc =(2q
2
c) ; (12)

and where c= g−1C0. From the above equations we can see that the system exhibits
four possible phases:
(a) phase I, a homogeneous phase where  I→ 0 as hqc → 0 and where qc= qI 6=0;
(b) phase II, a complete segregated phase, where  II 6→ 0 as hqc → 0 and where

qc= qII = 0;
(c) phases III+ and III−, two microphases where partial segregation occurs, where

 III 6→ 0 as hqc → 0 and where qc= qIII 6=0.
The free energy associated with each one of these phases is given by

�FI = 1
2

[
t +

(aqI)2

24

]
 2I + u 4I + g−1[1− e−[cg 

2
I=(2qI)]]− h−qI I (13)

for phase I,

�FII =
t
2
 2I +

u
4
 4I + g−1 (14)

for phase II and

�FIII = 1
2

[
t +

(aqIII)2

24

]
 2III + u 4III + g−1[1− e−[cg 

2
III=(2qIII)]]− h−qIII III (15)

for phases III±. The values of  I;  II;  III; qI, and qIII, are given by the saddle-point
solutions of Eqs. (11) and (12).
Then, by comparing the free energies associated with each one of the phases, we

�nd [10] the phase diagram illustrated in Fig. 1. At high temperatures, only the homo-
geneous phase is present. For strong gels (low g), as the temperature is decreased, the
microphases predicted by de Gennes appear. However, contrary to his analysis, there
is no transition between phase I and phases III+ or III−. As the temperature is de-
creased even further, the system segregates completely. The transition between phases
III± and II is of �rst-order. For weak gels, the microphase is not present. Indeed, there
is a �rst-order phase transition between the homogeneous phase, I, and the completely
segregated phase, II. In our phase diagram, de Gennes model corresponds to the con-
tinuous transition at (g=0, h=0). At the plane h=0, the critical line, � meets the
�rst-order phase boundaries, �±, at the end point e [6,8].
Recently, it was suggested that for any system that has an end point, the phase

boundaries near this region should exhibit universal features related to the nonanalyt-
ical behavior of the thermodynamic functions near the critical �-line [11]. We also
con�rmed this prediction in our model for cross-linked polymer blends [10].
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Fig. 1. Phase diagram t × g × h for an A–B polymer blend. Phase I is a homogeneous phase, phase II
is completely segregated, and phases III± are the microphases. The dashed line, is a continuous �-line of
transitions, the planes � and � are �rst-order phase boundaries and e locates the end point. The �rst-order
lines, �±, are the intersection of the surface � with the plane h=0.

3. Discussions and conclusions

We have generalized de Gennes–Schulz’s model [4,8] for microphase separation in
cross-linked polymer mixtures by taking into account the asymmetry between the two
species of polymers, A and B, and by considering a non-homogeneous distribution of
cross-links that are also not �xed in space.
Our main results are summarized in the phase diagram illustrated in Fig. 1. We

found that a mixture of two chemically di�erent polymers at high temperatures is in
an homogeneous phase. If the system is strongly cross-linked (high values of g), as
the temperature is decreased, there is the formation of two possible partial segregated
phases or microphases. These phases are characterized by forming small domains rich
in one type of polymer, A, followed by domains rich in the other species, B, and
vice versa. The symmetry between the two microphases is broken by the di�erence in
chemical potential, for example, or any “�eld” that would prefer one phase over the
other. In this asymmetric case, there is no phase transition between the homogeneous
and one of the microphases. If, however, the temperature is decreased even further, one
�nds a �rst-order phase transition from partial to complete segregation. On the other
hand, if g is large, the polymers are just weakly cross-linked and, as the temperature is
decreased, the system segregates in two regions, one rich in A and another rich in B.
This transition between the homogeneous phase and the complete segregated phase is
of �rst-order.
The microphases, III− and III+, are characterized by an average domain size that is

proportional to �∝ 1=qIII. Close to the critical line, the wave vector qIII is related to
the elastic constant c by qIII≈ (24c=a2)1=4. If the number of monomers between two
cross-links is �xed and given by n, one �nds that the coe�cient of internal rigidity
is given by c=36=(na)2 [4] and, consequently, qIII = 5:42=(an1=2). However, if we as-
sume that the number of monomers between two cross-links is not �xed but given by a
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distribution of sizes {n�}, then qIII = 5:42%=a(〈n〉)1=2 where 〈n〉 is the average distance
between two cross-links and where %=(〈n〉 〈1=n〉)1=4 is a parameter that depends on
the distribution. Experimental results gives qIII = 2:30=(〈n〉)1=2 [1], that agrees qualita-
tively with de Gennes calculation, and is in good agreement with our analysis if the
distribution {n�} is such that 1=%=2:36.
Another interesting result is that for weaker gels the microphase disappears and the

phases of the system separate as observed in real systems [1,2].
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