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Abstract

A lattice model for the study of mixtures of associating liquids is proposed. Solvent and solute

are modeled by adapting the associating lattice gas (ALG) model. The nature of interaction so-

lute/solvent is controlled by tuning the energy interactions between the patches of ALG model. We

have studied three set of parameters, resulting on, hydrophilic, inert and hydrophobic interactions.

Extensive Monte Carlo simulations were carried out and the behavior of pure components and the

excess properties of the mixtures have been studied. The pure components: water (solvent) and so-

lute, have quite similar phase diagrams, presenting: gas, low density liquid, and high density liquid

phases. In the case of solute, the regions of coexistence are substantially reduced when compared

with both the water and the standard ALG models. A numerical procedure has been developed in

order to attain series of results at constant pressure from simulations of the lattice gas model in

the grand canonical ensemble. The excess properties of the mixtures: volume and enthalpy as the

function of the solute fraction have been studied for different interaction parameters of the model.

Our model is able to reproduce qualitatively well the excess volume and enthalpy for different

aqueous solutions. For the hydrophilic case, we show that the model is able to reproduce the ex-

cess volume and enthalpy of mixtures of small alcohols and amines. The inert case reproduces the

behavior of large alcohols such as, propanol, butanol and pentanol. For last case (hydrophobic),

the excess properties reproduce the behavior of ionic liquids in aqueous solution.
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I. INTRODUCTION

Mixtures of water and organic solutes are of fundamental importance for understanding

biological and chemical processes as well as transport properties of fluids. Even though the

simplicity, of these solutions some of them show a complex behavior of their thermodynamic

and structural properties [1]. For example, close to the ambient conditions, around T =

298.15K, p = 1bar, the excess volume in binary mixtures of water and alcohols [2–6] and of

water and alkanolamines [7, 8] is negative and it exhibits a minimum as the fraction of the

solute is increased. In the case of water-ionic liquids, however, the excess volume depend on

the hydrophobicity of the solute. Simulation results suggest that for hydrophilic solutes as

the 1,3-dimethylimidazolium chloride the excess volume has a minimum as in the case of the

alcohols, whereas for the case of more hydrophobic liquids as the 1,3-dimethylimidazolium

hexafluorophosphate the excess volume is positive [9].

The excess enthalpy of the aqueous organic mixtures also show a distinct behavior. While

the mixtures of water with small alcohol molecules as methanol [6, 10, 11] and ethanol [6, 12]

exhibit a negative excess enthalpy, the mixtures of water with large alcohol molecules as

propanol and butanol isomers show a positive excess enthalpy [6]. Similarly to the small

alcohol-water mixtures the excess enthalpy for the water-alkanolamine solutions also show

a minimum [13]. In the case of ionic liquids the excess enthalpy also show two types of

behavior. For the less hydrophobic ionic liquids in which the excess volume is negative,

the excess enthalpy is negative and shows a minimum at the same solute fraction of the

minimum of the excess volume. For the hydrophobic ionic liquids the excess enthalpy is

positive and shows a maximum for the same fraction of the solute of the maximum of the

excess volume [14, 15].

The excess isobaric specific heat for the methanol at ambient conditions increases with

the fraction of the solute and exhibits a maximum value around the solute concentration

x2 = 0.16 [16, 17]. The excess free energy presents a harmonic dependence on the methanol

fraction [18] and the excess entropy of mixing, differently from the ideal mixtures [19],

assumes negative values and decrease its value as the increasing methanol concentrations [20].

In the case of the ionic liquids the constant pressure heat capacity also shows an oscillatory

behavior but the peak occurs at higher concentrations of the solute x2 = 0.3 [14, 15].

The description of this complex behavior of the organic solutes in water in can be made,
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in principle, in the framework of the Frank and Evans [1] iceberg theory. These authors

proposed that water is able to form microscopic icebergs around solute molecules depend-

ing on their size and the water-solute interactions. Recent experiments [21] using neutron

diffraction support Frank and Evans [1] scenario for the methanol. The diffraction of a con-

centrated alcohol-water mixture (x2 = 0.70) suggests that at these conditions most of the

water molecules (∼ 87%) are organized in water clusters bridging methanol hydroxyl groups

through hydrogen bonds. In the same direction an experimental result from X-ray emission

spectroscopy for an equimolar mixture of methanol and water carried out by Guo et.al. [22]

suggests that in the mixture the hydrogen bonding network of the pure components would

persist to a large extent, with some water molecules acting as bridges between methanol

chains. Consistent with these results, recent experimental work for the methanol [21, 22]

suggests that the negative excess the entropy of mixing arises due to a relatively small degree

of the interconnection between the hydrogen bonding networks of the different components

rather than from a water restructuring [21].

Motivated by these experimental results and by the huge number of applications, water-

methanol mixtures have been intensively studied by computer simulations. In these simu-

lations, water molecules are represented by one of well known classical models SPC/E [23],

ST4 [24], TIP5P [25] and methanol molecules are frequently modeled by OPLS force

field [26]. Using Molecular Dynamics simulation, Bako et.al. [27] found that on increasing

the methanol fraction in the mixture, water essentially maintains its tetrahedral structure,

whereas the number of hydrogen-bonds is substantially reduced. Allison et.al. [28] showed

that not only the number hydrogen-bonds decreases, but the water molecules become even-

tually distributed in rings and clusters in accordance with the experimental results [21].

Analyzing the spatial distribution function of the water, Laaksonen et.al. [29] observed that

the system is highly structured around the hydroxyl groups and that the methanol molecules

are solvated by water molecules, in accordance with well known iceberg theory [1].

In addition to the atomistic approaches, water-methanol mixture has been modeled by

continuous potentials in which the water is represented by a spherical symmetric two length

scale potential while the methanol is represented by a dimer in which the methyl group is

characterized by a hard sphere and the hydroxyl is a water-like group [30, 31]. Numerical

simulations for this system displays good qualitative agreement with the response functions

for different temperatures [30, 31] but fails to produce the heat capacity behavior and does
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not provide the structural network observed in experiments and predicted by the iceberg

theory.

Due to the variety and complexity of the ionic liquids, very few theoretical studies have

been made for analyzing the ionic liquids aqueous solutions. For example, there is no clear

picture explaining why the excess volume of some ionic liquids is negative while for others

is positive. In addition, it is not clear why for large alcohols the excess enthalpy is positive

while for the methanol is negative. The explanation for these different behaviors both in

the alcohols and in the ionic liquids might rely in the disruption of the iceberg theory as

the solute is large of hydrophobic. In order to test this idea, here we explore how the

excess properties of the water-solute mixture is affected by the change of the water-solute

interaction from attractive to repulsive. In order to allow for the water to form a structure

not present in the continuous effective potentials, our model exhibits a tetrahedral structure.

In this work the water and the solute are modeled following the associating lattice gas

model (ALG) [32–34] scheme. The two molecules are specified by adapting the hydrogen

bond and the attractive interactions for each molecule. The excess volume and enthalpy are

computed for various types of water-solute interactions.

The remaining of the paper goes as follows. In the Section II the models for water,

solute and mixture are outlined and the ground state behavior is presented. The technical

details about the calculations of ground state are presented in the Appendix A. In the

Section III the computational methods are described and the technical aspects can be found

in Appendix B and C. In the Section IV results are presented. Section V ends the paper

with the conclusions.

II. MODEL

We consider three systems: pure water, pure solute and water-solute mixture. In the three

cases the system is defined on a body-centered cubic (BCC) lattice. Sites on the lattice can

be either empty or occupied by a water or by a solute molecule. Particles representing both

water and solute molecules carry four arms that point to four of the nearest neighbor (NN)

sites on the BCC lattice as illustrated by the figure 1. The interactions between NN molecules

are described in the framework of the lattice patchy models [35]. The particles carry eight

patches (four of them corresponding to the arms in the ALG model), and each of the patches
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points to one of the NN sites in the BCC lattice as illustrated in the figure 1. The water

molecules have two patches of the type A (acceptors), two patches of the type B(donors)

and four patches of the type D (which do not participate in bonding interactions). Since

the patches of the types A and B participate in the hydrogen bonding, a water molecule

can participate in up to four hydrogen bonds. The structure of the solute is similar to the

structure of the water, but it has only one patch of type A, the other patch A is replaced

by a patch of the type C that represents the anisotropic group which makes water and the

solute different. In the case in which the solute is the methanol C is the methyl group while

for other alcohols and ionic liquids it does represent larger chains.

Si

B

A

AB

Si

B

C

AB

FIG. 1. Representation of lattice for pure components. The blue sphere represents the water

and the patches A and B represent the acceptors and donors arms respectively. The red sphere

represent the solute particle and the arms A and B represent the acceptor and donors, and the

patch C represents the anisotropic group

The distinction between patches implies 12 possible orientations for the water molecules

and 24 possible orientations for the solute molecules.

The potential energy is defined as a sum of interactions between pairs of particles located

at sites which are NN on the BCC lattice. The interaction between particles i and j, which

are NN, only depends on the type of patch of particle i that points to particle j, and on the

type of patch of particle j that points to particle i. The values of the interaction as a function

of the types of the two interacting patches are summarized in the Table I. The interaction

between occupied neighbor sites is repulsive with an increase of energy by εij = ε with the

exception of three cases. For patch-patch interaction of type A − B the energy interaction

is taken as: εij = −ε. If the interaction is of type B − C, with the B patch belonging to a
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Sj

SiBW

BS

BW

BS

FIG. 2. Representation of lattice. Si and Sj represent particle on its respective positions i and j.

Blue sphere represent a water and red, a solute particle. BW and BS represent the patches B of

water and solute respectively. The patch D is not represented here for the clarity of the image.

solute molecule there is also an attractive interaction εij = −λSε (with λS > 0), whereas if

the patch B belongs to a water molecule the interaction energy is given by εij = −λW ε.
We have considered λS = 0.25, and three cases for the B-C water-solute interaction:

attraction with λW = λS, non-interacting with λW = 0 and repulsion with λW < 0. The

first case represents systems dominated by the water-solute attraction. This is the case of

the methanol in which it is assumed that the methyl group shows a small but attractive

interaction with the water. This also represents the ionic liquids in which the anions groups

are hydrophilic and the cationic chains are not too long [36, 37]. The second case represents

alcohols with larger non-polar alkyl substituents [6]. The third case represents the ionic

liquids in which the combination of the anions and cations lead to an hydrophobic interac-

tion [36, 37]. Due to the simplicity of our model solute, size and hydrophobicity effects are

not taken into account independently, but both are considered through the λW parameter.

At zero temperature for the cases of the pure water and the pure solute systems three

possible thermodynamic phases can appear in the model: For low values of the chemical

potential, µ, the stable phase is the empty lattice representing the gas phase at reduced

density, ρ∗ = N/NL = 0, with N being the number of particles (occupied sites) and NL the

number of sites of the lattice. Increasing µ a low density liquid phase (LDL) appears [32–

34, 38], where half of the sites of the lattice are occupied by particles (ρ∗ = 1/2). These

sites are those belonging to one of the diamond sublattices [39] that can be defined on the
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p(S) D A BW BS C

D ε ε ε ε ε

A ε ε −ε −ε ε

BW ε −ε ε ε −λW ε

BS ε −ε ε ε −λSε

C ε ε −λW ε −λSε ε

TABLE I. Interactions between NN particles of the same type (solute or water). The interaction

depends on the patches of both particles involved in the interparticle bond. The interaction between

patches of type C and B depends on the type of molecule: water (W) or solute (S) that provides

the patch B. We consider 0 < λS ≤ 1; and ε > 0. Patches of types A, B, and C correspond to the

four arms of the standard ALG model.

BCC lattice. Every patch of the type A is pointing to a patch of the type B, and vice versa.

In the case of water only pair interactions AB occur. In the case of the solute both AB

and CB interactions occur. At higher values of the chemical potential, the stable phase is

the high density liquid (HDL), where all the sites are occupied, and as for the LDL phase,

in the case of water, every patch of type A is bonded to a patch of type B and vice versa.

In the case of the solute every patch of type A is bonded to a patch of type B and every

patch of type C is bounded to a patch of type B. The modification of the ALG model by

considering different types of arms introduce, at zero temperature, a residual entropy per

particle s0, that in thermodynamic limit can be written as, s0 = kB limN→∞ [N−1 lnQ0(N)],

where kB is Boltzmann’s constant, and Q0(N) is the number of configurations of the system,

in which every patch of type B is interacting with a patch of type A (or C), and every patch

of type A (or C) is interacting with a patch of type B. Using Monte Carlo (MC) simulations

and thermodynamic integration techniques [40, 41] we have obtained the values of residual

entropy for the water (s
(W)
0 /kB = 0.41041±0.00002) and solute (s

(S)
0 /kB = 1.10356±0.00002)

models. For more details about the computation of residual entropies, see Appendix A.

From the values of residual entropy we can study the system in ground state. The Grand

Canonical thermodynamic potential can be written as:

Φ ≡ −pV = U − TS − µN, (1)

where U is the internal energy, S is the entropy, and N the number of particles (occupied
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positions). In the Ground State, the stable phase for a given value of µ is the one with the

minimum value of Φ. Considering the description of the ordered phases explained above,

for the water model Φ take the values (for T → 0):

Φ
(W)
G (V, µ)/V ∗ = 0 (ρ∗ = 0);

Φ
(W)
LDL(V, µ)/V ∗ = −ε− Ts(W)

0 /2− µ/2; (ρ∗ = 1/2);

Φ
(W)
HDL(V, µ)/V ∗ = −Ts(W)

0 − µ; (ρ∗ = 1)

(2)

with V ∗ being the reduced volume (equal to the number of sites). Imposing that in coexis-

tence the Φ
(W)
G = Φ

(W)
LDL and Φ

(W)
LDL = Φ

(W)
HDL we obtain the values of the chemical potential

and the pressure, at the transitions in the limit of low temperatures

µ = −2ε− Ts(W)
0 , pw0/ε = 0, G-LDL water

µ = 2ε− Ts(W)
0 , pw0/ε = 2, LDL-HDL water;

(3)

where the factor w0 = V/NL correspond to the volume per site. For the case of pure solute

the thermodynamic potential Φ of the different phases as T → 0 is given by

Φ
(S)
G (V, µ)/V ∗ = 0; (ρ = 0);

Φ
(S)
LDL(V, µ)/V ∗ = −(1 + λS)ε/2− Ts(S)

0 /2− µ/2; (ρ = 1/2);

Φ
(S)
HDL(V, µ)/V ∗ = (1− λS)ε− Ts(S)

0 − µ; (ρ = 1),

(4)

and for the phase equilibria at low temperature we get:

µ = −(1 + λS)ε− Ts(S)
0 , pw0/ε = 0, G-LDL solute,

µ = (3− λS)ε− Ts(S)
0 , pw0/ε = 2, LDL-HDL solute

(5)

All the relevant quantities will be expressed in reduced units, such as:

µ∗ =
µ

ε
, T ∗ =

kBT

ε
, c∗V =

cV
kB
, p∗ =

pw0

ε
, s∗ =

s

kB
(6)

III. SIMULATION AND NUMERICAL DETAILS

In order to obtain the phase diagrams and compute the thermodynamic and structural

properties of one-component systems, we have performed MC simulations in the grand

canonical ensemble (GCE) for system sizes 512 ≤ NL ≤ 65536 where NL = 2L3. The

simulations have used ∼ 8 × 106 MC sweeps for equilibration and ∼ 4 × 106 sweeps for

evaluating the relevant quantities. Each MC sweep is defined as NL one-site attempts to
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generate a new configuration. Each attempt is carried out as follows: i) A site i on the

lattice is chosen at random; this site can adopt ns possible states, Si = 0, 1, 2 · · · , ns − 1

(ns = 13 for pure water; ns = 25 for pure solute, and ns = 37 for the mixtures); Si = 0

represents an empty site, and the remaining values stand for the different species that can

occupy the site and their respective orientations. ii) For the selected site, one of its possible

ns states is selected at random, with probabilities given by:

P (Si) ∝ exp

[
−Ui(Si)− µ(Si)

kBT

]
, Si = 0, 1, 2, · · · , ns; (7)

where Ui(Si) contains the potential energy interactions between site i at state Si with its

NN, and µ(Si) is the chemical potential of the component associated with state Si. Notice

that for an empty site Si = 0, both Ui(Si) and µ(Si) are zero, and that for Si 6= 0, the value

of Ui depends on the states of the sites which are NN of i.

We have combined the one-site sampling procedure with different advanced techniques

in order to enhance the simulation efficiency: In the regions close to continuous transitions,

where critical slowing down may be present [42], we have made use of the Parallel Tempering

(PT) method[43, 44]. The Gibbs-Duhem integration [45] technique adapted for working in

the GCE [35, 39] was employed in the location of the discontinuous phase transitions of the

system. In order to study the excess properties of the mixtures as functions of the pressure

and temperature we have developed methods to build up isobars for one-component systems

(See Appendix B), and lines at constant pressure and temperature with varying composition

for the binary mixtures (See Appendix C).

IV. NUMERICAL RESULTS

A. The phase diagram for pure components

The chemical potential vs. temperature phase diagrams are shown in the Fig. 3 for the

pure water and for the pure solute. Three different phases, G, LDL, and HDL appear, as

expected. At low temperature, there are two, G-LDL and LDL-HDL first-order transitions.

The first order LDL-HDL transition finishes, both for water and solute, in a liquid-liquid

tricritical point (LLTCP). The LLTCPs occur at T ∗tc ' 0.59 and µ∗tc ' 1.67 for water and

at T ∗tc = 0.25 µ∗tc = 2.42 the solute. Above Ttc the LDL-HDL transition becomes continuous
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0.0 0.5 1.0 1.5 2.0
T ∗

−3

−2

−1

0

1

2

3

4

µ∗

GAS

LDL

HDL
λ−line

τ−line

LGT

LLT

LLTCP

LGBCP

0.0 0.5 1.0 1.5 2.0
T ∗

−3

−2

−1

0

1

2

3

4

µ∗

HDL

LDL

GAS

λ−line

τ−line

LGT

LLT

LLTCP

LGTCP

FIG. 3. Reduced chemical potential versus reduced temperature phase diagram for (a) pure water

(b) pure solute. Solid thick lines represent first-order phase transitions, liquid-gas (LGT) and

liquid-liquid (LLT). Thin lines represent continuous (second-order) transition, the empty circles

show the λ−line and the filled circles are the τ−line. The big patterned circles represent the

multi-critical points of the model. (See the text for details).

and defines the λ−line (See Fig. 3). At high temperature, it appears a continuous transition

between G and HDL phases (τ−line in Fig. 3).

The coexistence line between the G and LDL phases for water extends up to a bicritical

point (LGBCP) [46] located at T ∗bc ' 1.00 and µ∗bc ' −0.22. At this LGBCP the G-

LDL transition meets the lines for the critical G-HDL (τ−line) and LDL-HDL (λ−line)

transitions. In the case of solute, the G-LDL first order transition meets the λ-line at an

end point located at T ∗t ' 0.74, µ∗t ' 0.86. Above this temperature there is a G-HDL first

order transition up to a tricritical point (LGTCP) located at T ′∗tc ' 0.85, µ′∗tc = 0.84. Above

this temperature the G-HDL transition becomes continues and defines the τ -line.

The continuous τ and λ transitions, illustrated in the figure 3 are represented by thin

lines and circles. The values of the temperatures and chemical potentials for the critical lines

were obtained by computing appropriated order parameters and their associated moments

or cumulants.

In the case of the λ line, the θλ order parameter is defined as follows. The system is divided

into eight sublattices [33]. The figure 4 illustrates the behavior of the eight sublattices as a

function of the temperature at the λ-line. As the temperature is decreased four sublattices

become full while other four stay empty. Then, from the density of these sublattices, the
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order parameter is defined by

θλ =
2

V

[
full∑

i=1

ρi −
empty∑

j=1

ρj

]
, (8)

where the index i runs over the four sublattices which become full at the LDL phase while

the subindex j runs over the four sublattices which remain empty at the LDL phase. The

figure 4 illustrates the value of this order parameter as a function of the temperature for fixed

chemical potentials for both the pure water and the pure solute cases showing the transition

from all the sublattices equally populated to a preferential occupation in four sublattices.

0.7 0.8 0.9 1.0
T ∗

0.0

0.2

0.4

0.6

0.8

1.0

θλ

(A)

water

µ = 1.00

0.5 0.6 0.7 0.8
T ∗

0.0

0.2

0.4

0.6

0.8

1.0

(B)

solute

µ = 1.00

µ = 0.00

µ = 1.50

0.80 0.85 0.90
T ∗

0.0

0.2

0.4

0.6

0.8

1.0

〈ρi〉

(C)

i = 1, 4, 5, 8

i = 2, 3, 6, 7

0.5 0.6 0.7 0.8
T ∗

0.0

0.2

0.4

0.6

0.8

1.0

(D)

i = 1, 4, 6, 7

i = 2, 3, 5, 8

FIG. 4. Order parameter θt versus reduced temperature for (A) water and (B) solute for various

chemical potentials. Average density of the empty (red) and full (blue) sublattices for (C) water

and for (D) the solute.

This transition can also be described by taking into account that for the ALG model

there are four possible realizations of the LDL structure (with diamond structure) on the

BCC lattice. The occupancy of the sites and orientations of the arms (patches of types A,

B and C) is well defined for each LDL realization. Taking into account the orientation of

the occupied sites on a given configuration, we can compute the number of particles in the

system compatible with each of the four LDL realizations. Let ni, with i = 1, 2, 3, 4 be those

numbers. From each configuration, we can sort the ni values so that na ≥ nb ≥ nc ≥ nd, and

compute their corresponding densitie s ρa = na/NL, ρb = nb/NL · · · . In the thermodynamic

limit (NL →∞), we expect for the G phase: ρa ' ρb ' ρc ' ρd ' ρ/4. For the HDL phase

ρa ' ρb � ρc ' ρd, and finally for the LDL phase ρa � ρb. Accordingly the presence of the
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LDL phase can be detected by an order parameter, Oλ ,given by

Oλ = ρa − ρb; (9)

The system size dependence of the shape the Oλ distribution can be analyzed by looking at

the ratio [42]:

g4λ =
〈O4

λ〉
〈O2

λ〉
2 ; (10)

where the angular brackets represent average values. In figure 5, we show the results for

〈Oλ〉 and g4λ as functions of the chemical potential for various lattice sizes and at T ∗ = 0.80.

The crossing of the lines of g4λ for different values of L locate the critical chemical potential

at that temperature, i.e, the corresponding point of the λ−line.

1.36 1.38 1.40 1.42 1.44
µ∗

0.0

0.2

0.4

0.6

0.8

ρ
∗ α

,
ρ
∗

(A)

L = 8
L = 16
L = 32

1.36 1.38 1.40 1.42 1.44
µ∗

0.00

0.05

0.10

0.15

0.20

0.25

Oλ

(B)

L = 8
L = 10
L = 12
L = 14
L = 16
L = 18
L = 20
L = 24
L = 28
L = 32

1.36 1.38 1.40 1.42 1.44
µ∗

1.0

1.5

2.0

2.5

3.0

g 4
λ

(C)

L = 8
L = 10
L = 12
L = 14
L = 16
L = 18
L = 20
L = 24
L = 28
L = 32

FIG. 5. Location of the continuous LDL-HDL transitions for the water model at T ∗ = 0.80 and

different system sizes: NL = 2L3. At (A) Total reduced density and partial densities, ρα as

functions of µ. (B) (left) Order parameter Oλ and (left) g4λ as a function of µ.
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Complementary to the study of the θλ and Oλ order parameters described above, the

behavior of the specific heat at constant volume for different system sizes were analyzed.

At criticality, it is expected that the specific heat would show a divergence as the thermo-

dynamic limit is approached. The finite-size scaling behavior of the critical exponent of the

specific heat, α, gives the critical behavior at the infinite system [42]. The heat capacity at

constant volume ( per lattice site) cV = (∂U/∂T )N,V /V is computed from the data obtained

from simulations at constant chemical potential through the expression [40],

cV =
1

kBT 2V

[
〈
δU2

〉
− 〈δUδN〉

2

〈δN2〉

]
. (11)

Here U is the interaction energy of model described in the Table I, and N is the number

of particles. The averages in Eq. (11) are carried out on the grand canonical ensemble.

0.5 0.7 0.9
T ∗

1

2

3

4

5

solute

(B) L = 8

L = 16

L = 32

0.7 0.9 1.1
T ∗

1

2

3

4

c∗V water

(A) L = 8

L = 16

L = 32

0.6 0.8 1.0 1.2 1.4
T ∗

1

2

3

4

c∗V

λ−line

τ−line

(C) water

solvent

FIG. 6. Heat capacity versus reduced temperature for the reduced chemical potentials (A) µ∗ = 1.0

and (B)µ∗ = 1.6 for water and solute respectively for different L values for the λ-line. The same

for µ∗ = 1.2 showing both the λ and the τ -lines.

The figure 6 shows the specific heat at constant volume versus temperature at constant

µ, illustrating the diverging peak at T ∗ ' 0.9 for the pure water system and at T ∗ ' 0.6 for

the pure solute, as L increases. The peak in the heat capacity cV in addition to the Oλ and

θλ behavior is employed to locate the λ−line.

The τ -line corresponds to the transition between G and HDL phases. An order parameter

based on the symmetry of the ALG model can be defined to quantify the HDL ordering of the

configurations. The BCC lattice can be splitted into two interpenetrated cubic sublattices.
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FIG. 7. Oτ versus reduced temperature for different systems sizes at chemical potential µ = 2.0

for water (A) and solute (B) models. g4τ versus reduced temperature for different systems sizes at

chemical potential µ = 2.0 for water (C) and solute (D) models.

In the HDL structure, each sublattice adopts a different but complementary orientation.

The appropriate order parameter for the τ -line is given by

Oτ =
1

NL

∣∣∣∣∣
NL∑

i=1

l(i)s(i)

∣∣∣∣∣ , (12)

where l(i) depends on the cubic sublattice where the site i stands (with values −1, and +1

for the two sublattices), and s(i) represents the orientation of the particle at site i, with

s(i) = 0 for empty sites. This order parameter is analogous to that for antiferromagnetic

Ising models in bipartite lattices. In the figure 7 we show the shape of the order parameter

at the HDL-G transition (top panels). For the G phase Oτ vanishes in the thermodynamic

limit while for the HDL it remains finite. The approximate location of the transition is

obtained by the crossing of the curves for different sizes. Even though the behavior of the

order parameter illustrates how the structure of the phases change at the phase transition,

it does not provide the precise temperature and chemical potential. The precise location of

the transitions can be achieved by looking at the system size dependence of the ratio, g4τ :

g4τ =
〈O4

τ 〉
〈O2

τ 〉2
, (13)

where the brackets indicate average over grand canonical simulations. At the τ -line tran-

sition, it is expected that the values of g4τ become independent of the system size. The

figure 7, examples for water and solute of the behavior of g4τ (T,NL) for fixed µ, at the
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G − HDL transition (λ− line) are presented. The value of g4τ at the crossing region, to-

gether with the form of the order parameter suggest three-dimensional Ising criticality. In

addition the location of the τ -line can be confirmed by the divergence of the heat capacity.

B. The excess properties of the water-solute mixtures

Next, we explore the mixture of water and solute. The thermodynamic excess properties

of the mixture are defined by comparing the values of a given extensive property per mol

(or per molecule) with the values of this quantity for an ideal mixture. In the case of the

excess volume we have:

V̄ E(x, p, T ) = V̄ (x, p, T )−
[
(1− x)V̄ 0

1 (p, T ) + xV̄ 0
2 (p, T )

]
; (14)

where V̄ (x, p, T ) is the volume per molecule of the mixture at molecular fraction x of the

solute (component 2) x (i.e. x ≡ x2), V̄ 0
1 (p, T ) and V̄ 0

2 (p, T ) are the volumes per molecule

of the pure solvent (component 1) and pure solute respectively.

The thermodynamic properties for different compositions at constant T and p were com-

puted using GCE simulations coupled to the integration schemes explained in Appendices B

and C. In practice, for one component systems we apply an integration scheme to find the

line, µ(T |p) in the plane µ− T that corresponds to a fixed value, p of the pressure, and for

the mixtures we calculate the line µ1(µ2|T, p) in the plane µ1−µ2 that keep fixed the values

of T and p.

The volumes per molecule was estimated from the simulations as: V̄ = V/〈N〉. The

enthalpy, H of a given system is given by: H = U + pV , where U is the internal energy

(given for the patch-patch interactions). The enthalpy per molecule can be estimated as:

H̄ = [〈U〉+ pV ] 〈N〉. Whereas the mole fraction for given values of the activities zi =

exp [−µi/(kBT )], is computed as: 〈x〉 ' 〈N2〉/〈N〉.
The integration procedure provides the results for the different properties at equally

spaced discrete values of the activity, z, of one of the components, (say component 1)

which span from z1 = z
(0)
1 (pure solvent) to z1 = 0 (pure solute). For each of these cases

the properties of interest, x(z1), V̄ (z1), H̄(z1), · · · are computed. Then, to estimate the

dependence of the molar properties with the composition these properties are fitted to
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polynomials of x as:

Ȳf (x, T, p) =

jmax∑

j=0

a
(Y )
j (T, p)xj. (15)

The degree of the polynomial, jmax, is chosen according to statistical criteria, ensuring that

the fitted function provides a good description of the values of the property in the whole

range x ∈ [0, 1]. Using the functions given in Eq. (15) the excess properties for the volume

or the enthalpy are computed as a function of x as:

Ȳ E(x, T, p) = Ȳf (x, T, p)− xȲf (1, T, p)− (1− x)Ȳf (0, T, p). (16)

1. The λW = λS = 0.25 case

First, we analyze the case in which the B-C solvent-solute and solute-solute interactions

are both attractive and they have the same value namely λW = λS = 0.25. This represents a

system in which in addition the solvent interacts with the solute in two different ways, B-A

and B-C, both attractive. In principle this would be the case of the water - alcohol mixture

where water forms hydrogen bonds with the alcohol and shows and effective attraction with

the alkyl group.

The figure 8 illustrates the excess volume for the pressure and temperature p∗ = 0.10

and T ∗ ' 0.3. As the fraction of the solute increases, the excess volume decreases until it

reaches a minimum. The presence of this minimum in a water-solute system is observed in

the water-methanol [2, 16, 47–49], in the water-ethanol [5], in the water-alkanolamines [7, 8]

and in the water-hydrophilic ionic liquids [14] solutions.

The figure 8 also shows the excess enthalpy for our model as a function of the fraction

of the solute. The minimum observed in HE is also present in the in water-methanol [11],

water-ethanol [12], water-alkanolamines-[13] and in water with hydrophilic ionic liquids [14]

solutions.

The figure 9 illustrates snapshots of the system as the concentration of the solute is

increased. Since the system is in the LDL phase of the solvent, there is one sublattice empty

while the other is filled. In the case in which the solute is a hard sphere, as the solute

is added to the system it enters in the empty sublattice not competing with the solvent

occupation [34]. Here this is not the case. The solute enters in the same sublattice occupied

by the solvent.

16



0.0 0.2 0.4 0.6 0.8 1.0
x2

−0.25

−0.15

−0.05

V ∗E
(A)

T ∗ = 0.345
T ∗ = 0.350
T ∗ = 0.355

0.0 0.2 0.4 0.6 0.8 1.0
x2

−0.06

−0.04

−0.02

0.00

H∗E (B)

T ∗ = 0.345
T ∗ = 0.350
T ∗ = 0.355

FIG. 8. (A) excess volume and (B) excess enthalpy per particle as a function of solute concentra-

tion for λS = 0.25,λW = 0.25, p∗ = 0.10 and several temperatures.

(B) (C)

FIG. 9. The snapshot of system for λW = 0.25 and T ∗ = 0.350. The blue and red spheres represent

the water and solute respectively. At (A)-x2 = 0.024105, (B)-x2 = 0.704341 and (C)-x2 = 1.

The behavior of excess volume for this case is similar to that found in quasi-ideal [50]

mixtures of equal size Lennard-Jones particles and different potential well depth. In this

quasi-ideal mixture the Lennard-Jones energy parameters are given by, ε22/ε11 = 1.50, ε12 =

(ε11 + ε22) /2, therefore ε12/ε11 = 1.25. At temperature below the critical points and low

pressure this mixture have negative excess volume and its behavior as a function of the

temperature is qualitatively equal to that of our system. In relation to the excess enthalpy,

the same agreement occurs between the quasi-ideal [50] system and our model with λW = λS.

The excess enthalpy is negative for entire the range of the mole fraction and the departure

from the ideal mixture behavior increases on heating.
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In the same mixture if we consider the Lorentz-Berthelot rule ε12/ε11 =
√
ε22/ε11 ' 1.225

(less favorable cross interaction) the excess volume remains negative, but the excess enthalpy

becomes positive at temperatures slightly below the critical temperature of component one.
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FIG. 10. (A) Total density and partial densities and average number of (B) A-B bonds between

solvent-solvent, solute-solute and solvent-solute and (C) C-B bonds between solvent-solvent and

solvent-solute for λM = λW = 0.25, p∗ = 0.10 and T = 0.355.at T ∗ = 0.355 and p∗ = 0.10.

2. The λW = 0 and λS = 0.25 case

Next, we analyze the case in which the B-C solute-solute patch is attractive but the B-C

solvent-solute patch has no interaction. In this case λW = 0 while the solute-solute B-C

is attractive namely λS = 0.25. This represents a system in which in addition the solvent

interacts with the solute only through the B-A patch. In principle, this would be the case

of the water-alcohol mixture in which the alkyl group is larger than the preceding case and

therefore the molecule is less hydrophilic.

The figure 11 illustrates the excess volume and the excess enthalpy as a function of the

fraction of the solute for various temperatures. As the fraction of the solute increases,

the excess volume decreases until it reaches a minimum while the excess enthalpy has a

maximum. This behavior is consistent with the excess volume and enthalpy of mixtures of

water and large alcohol molecules such as propanol, butanol and pentanol [3, 6].

The variation of excess properties of this case with respect to the previous one can be

explained in terms of the fact that now cross interactions are less attractive, which produces
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FIG. 11. (A) Excess volume and (B) Excess enthalpy versus fraction of solute for various temper-

atures, λW = 0, λM = 0.25 and p∗ = 0.10.

an increase in the excess volume and enthalpy [50].

3. The λW = −0.25 and λS = 0.25 case

Finally, we analyze the case in which the B-C solute-solute patch is attractive but the

B-C solvent-solute patch is repulsive. In this case λW = −0.25 is repulsive while the solute-

solute B-C is attractive namely λM = 0.25. This represents a system in which in addition

the solvent interacts with the solute through the B-A with attraction probably forming

hydrogen bonds while show repulsion through the B-C patch. In principle this would be the

case of the water mixing with molecules that exhibit a hydrophilic region, and eventually,

can form a hydrogen bond, but the overall water-solute interaction is repulsive.

The figure 12 illustrates the excess volume and the excess enthalpy as a function of the

fraction of the solute for various temperatures. As the fraction of the solute increases, both

the excess volume and the excess enthalpy increase until they reach a maximum. This

behavior is found in hydrophobic ionic liquids [14, 15].

In this case, the cross interactions are more unfavorable and the excess enthalpy and

volume are both positives.
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FIG. 12. (A) Excess volume and (B) excess enthalpy versus fraction of methanol for various

temperatures. λW = −0.25, λM = 0.25 and p∗ = 0.10.
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FIG. 13. (A) Total density and partial densities and average number of (B) A-B bonds between

solvent-solvent, solute-solute and solvent-solute and (C) C-B bonds between solvent-solvent and

solvent-solute for λW = −0.25, T ∗ = 0.315 and p∗ = 0.10.

V. CONCLUSIONS

In this paper a combination of two Associating Lattice Models is employed to represent a

mixture of solute and solvent. In the principle the solvent is modeled as a water-like system

that exhibits the density and diffusion anomalous behavior present in water. The solute is

modeled by molecules that form two types of bonds with water: one attractive hydrogen

bond-like, the A-B interaction, plus an additional, tunable, B − C interaction.
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The pure components, by construction, present very similar phase diagrams. Both

present, first (G-LDL/LDL-HDL) and second order (λ−line/τ−line) transitions, as well

as some multicritical points. The phases in coexistence are also the same. The substantial

difference happens in the coverage area of phases and the position of multicritical points,

and critical lines. The continuous transitions belong to the 3D Ising model universality class.

For the mixture, by tuning the B-C patch from attractive to repulsive we were able to

qualitatively reproduce the behavior of the excess volume and enthalpy of different types of

mixtures.

The mapping of the relative hydrophobicity of the solutes through the λW parameter

of the model, allows us to explain the trends of the excess properties of the mixtures as

function of the intermolecular effective interaction.

Our result even though based on a very simple model reproduce a mechanism that seems

to be present in a large variety aqueous solutions.

Appendix A: Computation of the residual entropy

We consider a model defined over the diamond lattice with full occupancy. Each particle

(site) carries four arms which point to the four NN sites. In order to compute the residual

entropy of the lattice model for water we consider two arms of type A (or +1) and two arms

of type B (or -1). A given particle on the lattice can present qW = 4!/(2!2!) = 6 possible

configurations. For the lattice model of solute, we consider two arms of type A, two of type

B and one of type C, which leads to qM = 4!/2! = 12 possible orientations of the particle.

We set interactions between NN particles, so that the interaction energy is equal to zero

for configurations compatible with the ground state of the full model, and greater than zero

another case. The pair interactions between NN particles are therefore u = 0 when are due

to the interactions between pair of arms AB or CB, and u = ε > 0 for the other cases (AA,

BB, AC, and CC).

The partition function of the system can be written as:

Q =

qN∑

i=1

exp

[
−U ({S}i)

kBT
)

]
(A1)

where N being the number of particles (sites) of the system, U the interaction energy

and q the number of possible orientations of each particle. {S}i represent the different
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configurations of the system. The Helmholtz energy, A, is related with the partition function

through:
A

kBT
= − lnQ (A2)

In the limit of infinite temperature, all the possible configurations have the same probability

and we get: A/(kBT ) = −N ln q. We are interested in the limit at low temperature. Given

the fact that we know the partition function at high temperature, we can make use of

thermodynamic integration[40, 41] to get:

A(T )/(kBT ) = −N ln q +

∫ 1/(kBT )

0

U(T ′)d

(
1

kBT ′

)
; (A3)

Taking into account the thermodynamic relation A = U − TS, S being the entropy, and

defining reduced quantities U∗ = U/ε, and T ∗ = kBT/ε, we can get:

S(T )

kB
= N ln q1 +

U∗(T )

T ∗
−
∫ 1/T ∗

0

U∗(T ′)d (1/T ′∗) . (A4)

In the limit of low temperature the potential energy of the model vanishes, and it is also

fulfilled limT→0(U/T ) = 0, therefore we get:

S(T )

kB
' N ln q −

∫ 1/T ∗

0

U∗(T ′)d (1/T ′∗) ; (T ∗ → 0) (A5)

The residual entropy per particle s0(N) (as a function of the system size) can be computed

as:
s0(N)

kB
= ln q − lim

T ∗→0

∫ 1/T ∗

0

U∗(N, T ′)

N
d (1/T ′∗) (A6)

The determination of s0(N) has been carried out using Monte Carlo simulation, in combina-

tion with thermodynamic integration, and parallel tempering techniques. Different system

sizes were considered in order to carry out a finite-size scaling analysis to determine s0 in

the thermodynamic limit. Parallel tempering facilitates the equilibration of the systems

at low temperature, where the systems reach the ground state (except for some elemen-

tary excitations). For the lattice model for water, we have considered different system

sizes: N = 8`3, with ` = 2, 3, 4, · · · , 14. In each case we considered 257 values of (1/T ∗);

1/T ∗i = i × ∆(1/T ∗); i = 0, 1, · · · , 256; with ∆(1/T ∗) = 0.050. The averaged reduced

potential energy per particle u∗ = U/(Nε) is 1 for T → ∞, and it almost vanishes for the

lowest values of T considered in the integration u∗ � 10−6 (for the largest system sizes). It

decays rapidly as T → 0, making possible a reliable cut-off of the integration for a given
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TABLE II. System-size dependent estimates for the residual entropy presented as s∗0(N)/kB

` 2 3 4 5 6

s0(8`3)/kB 0.435774(13) 0.418939(18) 0.414306(18) 0.412543(16) 0.411693(18)

` 7 8 9 10 11

s0(8`3)/kB 0.411271(19) 0.410988(22) 0.410823(21) 0.410737(24) 0.410645(21)

` 12 13 14

s0(8`3)/kB 0.410619(14) 0.410574(13) 0.410549(8)

level of accuracy in the results. In TABLE II we present the estimates for s0(N). In order to

estimate the value of s0 in the thermodynamic limit we have considered the scaling relations

used by Berg et al. [51],

s0(N)/kB = s0/kB + a1N
−θ; (A7)

The fitting of the simulation results given in TABLE II to Eq. (A7), with (s0/kB), a1, and

θ being adjustable parameters leads to:

s
(W)
0 /kB = 0.410 41± 0.000 02; θ = 0.899± 0.005, (A8)

where the label (W ) refers to water. Considering the quantities Ω(NL) = exp[s0(NL)/kB],

and fitting the results to

Ω(N) = Ω + aΩN
−θ, (A9)

we get

Ω = 1.507 44± 0.000 04; θ = 0.905± 0.005. (A10)

The values of the exponent θ agree within statistical uncertainty with the results of Berg

et al. [51]. For the residual entropy of the ordinary ice. Interestingly, our estimate of Ω for

our model defined over a system with cubic symmetry and the estimate of for the ordinary

ice of Berg et al. [51]: ΩIce = 1.507 38± 0.000 16; θ = 0.923(23), seem to coincide (at least

within error bars) in spite of the different structures of the underlying lattices.

In principle, we could apply the same simulation techniques used for the water in the de-

termination of the residual entropy of the lattice gas model of the solute. However, the value

of s0 for methanol can be deduced directly from the water results. Given a ground state,

the configuration of the water for a system with N molecules (occupied positions) one can
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build up 2N directly related ground states for the methanol model, since the two (undistin-

guishable) A patches of each particle in the water model correspond to two distinguishable

(A and C) patches in the methanol model. Therefore, we get:

s
(S)
0 = s

(W)
0 + kB ln 2. (A11)

Appendix B: Computation of isobars for pure components

The excess properties of binary mixtures are usually measured experimentally at fixed

conditions of temperature and pressure [2, 6]. For lattice gas models it is neither straight-

forward not practical the use of simulation in the NPT ensemble. The usual alternative

is to carry out simulations in the grand canonical ensemble and compute the pressure by

means of thermodynamic integration. Since we are interested in analyzing the excess prop-

erties at fixed pressure, we have developed a procedure to build up the lines µ(T |p) for pure

components, i.e. we fix the pressure and compute the chemical potential as a function of

temperature at fixed pressure. The objective is to apply this to the ordered phases: LDL

and HDL. The pressure at (very) low temperature for these phases can be computed from

the ground state analysis. In the GCE the change of the pressure for transformations at

constant T and V , is given by dp = ρdµ. The density of the condensed phases at very low

temperature hardly changes with µ, therefore, we can integrate the pressure to get.

p = p0 + (µ− µ0) ρ0 (B1)

where the values of p0, µ0, and ρ0 can be taken as those corresponding to the phase coexis-

tence at low temperature (Eqs. 2-5). Once we now how to compute the chemical potential

for a given pressure p at a (low) temperature T1, we will develop the integration scheme to

move on the (µ, T ) plane at the fixed pressure p. Imposing dp = 0 in the differential form

for the thermodynamic potential of the GCE we get:

dµ = −U + pV −Nµ
NT

dT = − ũ− p+ µρ

ρT
dT (B2)

We typically considered systems with NL = 2× 163.
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Appendix C: The properties of mixtures at fixed T and p

The excess properties of mixing are usually defined as the differences between the values

of the property of the mixture at a given composition, x, and the value of the same property

for an ideal mixture of the components at the same conditions of x, T , and p. It is, therefore,

desirable to develop simulation strategies to sample in an efficient way different compositions

of a given mixture for fixed conditions of temperature and pressure. In order to achieve this

aim for our lattice model we have borrowed ideas to form the Gibbs-Duhem integration

procedures, as we did for computing isobars of pure components.

The differential form for the grand canonical potential of a binary mixture can be written

as:

− d
(
pV

T

)
= Ud

(
1

T

)
− p

T
dV −

2∑

i=1

Nid
(µi
T

)
; (C1)

where Ni is the number of molecules of component i, and µi is the chemical potential of

component i. If we fix T , p, and V , the chemical potential of the two components can not

vary independently when modifying the composition. It should be fulfilled:

N1dµ1 +N2dµ2 = 0 . (C2)

Using activities zi ≡ exp[µi/(kBT )] to carry out the integration of Eq. (C2) we get:

N1

z1

dz1 +
N2

z2

dz2 = 0 . (C3)

Let us assume that for some values of T , and p, we know the values of the activities of

the pure components z
(0)
1 , and z

(0)
2 . We can integrate numerically (using simulation results)

the differential equation:

dz2 = −N1z2

N2z1

dz1 . (C4)

For instance, using as starting point (z1 = z
(0)
1 , z2 = 0) and considering z1 as the independent

variable and integrating Eq. (C4) up to z1 = 0, we should reach z2(z1 = 0) = z
(0)
2 . This

condition provides a powerful consistency check of the thermodynamic integration schemes

at constant pressure. The numerical integration of (C4) can be carried out using the same

numerical procedures as in Sec. B. There is still, a minor technical problem, that appears

in the limits zi → 0; where Ni → 0, and therefore the ratio (Ni/zi) can not be directly

computed from the simulation. This problem can be solved by applying the Widom-insertion
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test technique[41] to compute the activity of the minority component (which actually has

mole fraction x = 0) as a function of its density. The result can be written as:

lim
zi→0+

ρ∗i
zi

= qi 〈exp [−∆ui/(kBT )]〉 ; (C5)

where 〈exp [−∆ui/(kBT )]〉 represents the average of the Boltzmann exponential over at-

tempts of insertion of a test particle of type i with random position and random orientation

on a pure component system of the other component and qi is the number of possible ori-

entations for molecules of type i. Results were obtained from simulations of systems with

NL = 2× 163.
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