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Multiple liquid-liquid critical points and density anomaly in core-softened potentials
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The relation between liquid-liquid phase transitions and waterlike density anomalies in core-softened potentials
of fluids was investigated in an exactly solvable one-dimensional lattice model and in a three-dimensional fluid
with a Fermi-like potential, the latter by molecular dynamics. Both systems were shown to present three liquid
phases, two liquid-liquid phase transitions closely connected to two distinct regions of anomalous density increase.
We propose that an oscillatory behavior observed on the thermal expansion coefficient as a function of pressure
can be used as a signature of the connection between the liquid-liquid phase transition and density anomaly.

DOI: 10.1103/PhysRevE.87.032303

I. INTRODUCTION

The phase behavior of single component systems as parti-
cles interacting via the so-called core-softened (CS) potentials
has received attention since the pioneering work of Stell and
Hemmer proposing the possibility of a second critical point
in addition to the usual liquid-gas critical point [1]. These
potentials exhibit a repulsive core with a softening region
with a shoulder or a ramp [1-3] which are analytically and
computationally tractable while being capable of retaining
the qualitative features of the real fluid systems. Furthermore,
Debenedetti and collaborators [4], using thermodynamic argu-
ments, showed that the isobaric thermal expansion coefficient
(o) of these potentials might have an anomalous negative
value and consequently a region where density increases
with temperature. Since for high temperatures the density
decreases with temperature, these potentials can exhibit a
temperature of maximum density (TMD) connecting the
two regions.

The thermodynamic anomalies predicted by these models
occur in liquids such as Te [5], Ga, Bi [6], S [7,8], liquid water
[9], and Ge5Tegs [10], and were found in simulations for silica
[11,12], silicon [13], and BeF, [11]. In addition, experiments
in phosphorous indicate the presence of a liquid-liquid phase
transition [14] and similar transitions were observed by
simulations in models of silica [15], silicon [13], and liquid
water [16].

In the particular case of water, the hypothesis of the
existence of two liquid phases has been indirectly supported by
experimental results in confined systems [17]. In spite of the
limit of 235 K below which water cannot be found in the liquid
phase without crystallization, two amorphous phases, a low
density amorphous phase and a high density amorphous phase,
were observed at much lower temperatures and their relation
to a metastable liquid-liquid phase transition was argued [18].
More recently a third amorphous phase, the very high density
amorphous phase, has been observed [19], which suggests the
possibility of the existence of a very high density liquid phase.
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Therefore the issue of a liquid-liquid phase transition and
its connection with the existence of a region in the pressure-
temperature phase diagram where the density decreases with
a decrease of temperature is itself an interesting topic. It is
accepted that the presence of two accessible length scales in
the potential allow for the system to have two liquid phases
and a density anomaly. These two structures can arise from
the competition between the two length scales in the potential
[3,4]. Two liquid and amorphous structures can also appear in
core-softened one length scale potentials, such as the Gaussian
model [20] and the Hertzian sphere model [21], or a very
soft ramp model [22]. In both examples the scales would be
visible by the double peak at the radial distribution function.
In the case of a single scale, the two peaks are associated
with the range of the core-softened potential as defined by
Debenedetti et al. [4]. In the Gaussian and Hertzian models
the Debenedetti et al. [4] condition applies only for a very
narrow range of distances. Consequently the density anomaly
appears in a very small region in the pressure-temperature
phase diagram [20,21].

The accessibility is the ingredient that explains why a
density anomaly derived in one dimension (1D) does not
necessarily hold at higher dimensions and why a density
anomaly derived for a smooth potential might be lost if the
slope linking the two length scales becomes infinite [23-25].
In addition, it is expected that in systems in which a density
anomalous region is present, the diffusion coefficient, the
excess entropy, and the structural order parameter would also
present an unusual behavior [26-28], with a certain hierarchy
that will depend on the detail of the potential [26,29].

In this paper we show, by means of an exactly solvable
1D model and numerical simulations of a similar three-
dimensional (3D) potential, that a three length scale potential
might exhibit three critical points and two density anomalous
regions if the different length scales would be accessible.
Previous computer simulations of core-softened potentials
with three scales proved that these models can exhibit three
critical points [30] but we find that two liquid-liquid phase
transitions are shown to occur that are associated with two
temperature of maximum density lines.

In addition, we propose a way to identify if a liquid-liquid
critical point would be present by exploring the behavior of
o for temperatures above the critical temperature. We show
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FIG. 1. Representation of the pair potentials investigated in
this paper: a one-dimensional lattice fluid and an isotropic three-
dimensional continuous core-softened model with three scales of
interaction. The top (bottom) horizontal axis is used to represent the
continuous (lattice) system.

that, for systems in which there is a density anomalous region
close to criticality, o exhibits a peculiar behavior diverging to
+o0 for pressures above the critical pressure and to —oo for
pressures below the critical pressure.

II. THE ONE-DIMENSIONAL MODEL

The core-softened potentials we analyze are illustrated in
Fig. 1 in units of length o and of energy €. They are composed
by a hard core of diameter o, two repulsive shoulders, and an
attractive well with depth —Ae, where we employ A = 1/10
for the 1D case and A = 1 for the 3D case. Both potentials are
detailed below.

We first investigate the 1D to obtain analytical insights and
to become familiar with the properties that will also appear
in the 3D case. The linear lattice has length L and N sites
separated by a distance 0 = L/N. The exact form of the Gibbs
free energy derived in the framework of the Takahashi method
[31] is given by

o0
G(T,P,N) = —NksT In [Z eﬂ“"”], (1)

r=1

where 8 = 1/(kgT) with kp the Boltzmann constant, and
h(r; P) = U(r) + Pr the microscopic pair enthalpy, with U ()
being the interaction energy between neighbor molecules.
Expression (1) is calculated using U(o) = 3¢, UQ2o) =€,
U@Bo)=—€/10,and U(r) = 0 forr > 30.

The minimization of Eq. (1) in the ground state results in
three configurations depicted in Fig. 1: a low density liquid
(LDL) phase, a high density liquid (HDL) phase, and a very
high density liquid (VHDL) phase, besides a gas phase (G)
(not illustrated). The coexistence between these phases allows
for three ground state phase transitions (GSTPs) to occur at
reduced pressures (P* = Po/€) PS5 p. =0, P'prupL = 1.1,
and Pjp; yppr = 2.0. In what follows the temperature is
reduced as T* = kgT /€.
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FIG. 2. (a) Pressure vs temperature phase diagram for the 1D
case. Continuous and dotted lines indicate the TmD and the TMD
lines, while symbols locate the ground state phase transitions.
(b) Density as a function of temperature, for various pressures.
The inset shows the reduced volume as a function of the reduced
temperature near the two critical points, according to (3).

The full phase diagram for the 1D case is illustrated
on Fig. 2(a) with the symbols indicating the three GSPTs
described above. From the LDL-HDL critical point (circle)
emerges a line of temperature of minimum density (TmD)
followed by a line of temperature of maximum density (TMD),
while from the HDL-VHDL critical (triangle) point there
appears a TMD. These lines separate the region where the
thermal expansion coefficient is positive from the regions
where o is negative. Figure 2(b) illustrates the density as a
function of the temperature for various pressures, some of
them crossing the TMD and the TmD lines.

Further comprehension of the relation between the density
anomaly and the ground state phase transitions can be
gained by visualizing « as a function of pressure (at fixed
temperature), as shown in Fig. 3. In the usual systems,
o — oo as the critical point is approached from any path in
the pressure-temperature plane. The peculiarity of models in
which the criticality is associated with the density anomaly
is that, below the critical pressure P., the sign of « is
negative, while for P > P, its sign is positive. Consequently,
« displays an oscillatory behavior as a function of pressure,
witha(P — P) - —ooanda(P — P}) — 400, whichis
a signature of the connection between the TMD line (or TmD)
and the critical point [32].
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FIG. 3. Thermal expansion coefficient («* = e«) as a function of
pressure at fixed temperatures, for the 1D case.

The relation between criticality and anomalous density
behavior can be rationalized by looking at the thermodynamic
close to the GSPT within the approximation adopted in
Ref. [33]. For a lattice model with a core-softened interaction
the reduced Gibbs free energy per particle in the vicinity of any
GSPT can be written in terms | and r;, the average distances
between the particles in the two coexisting phases, leading to

gt,p)=h.+p—th |:200sh (p7d>:|’ 2)

where ¢ = G/(NP,.r.), t=kgT/P.r., p=(P— P.)/P,,
and h. = h(r;)/(P.r;). For the LDL-HDL transition dis-
cussed above, ry =20, rn =30, d =1 +r)/(r —r)) =
1/5,and r. = (r; + r2)/2 = 50 /2. It follows from (2) that the
reduced volume per particle, v = V/(Nr.), can be written as

v(t,p) = 1 — dtanh (pt_d> 3)

In order to understand the relation between waterlike
anomalies and phase transitions we investigate the behavior of
molecular volume while approaching the GSPT, t = p = 0.
Close to this point the value of the reduced volume depends
on the path along which criticality is approached, namely,

L _|1—=d, p— o0t
mimo= {175 570 e
lim lim v = 1. (4b)

t—0 p—0

The behavior of the reduced volume indicates that slightly
below and above the LDL-HDL critical pressure the system
is arranged according the LDL and the HDL, respectively,
while exactly at the critical pressure the system becomes a
mixture of the two phases as the temperature is reduced. Thus,
the entropy gained by mixing with the HDL phase explains
the density increase observed on the LDL side.

III. THE THREE-DIMENSIONAL MODEL

Next, we consider if the presence of three critical points and
two regions of density anomaly observed for one dimension
holds for three dimensions. To this end, we perform molecular
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TABLE 1. Coefficients of the core-softened pair potential of
Eq. (5). Distances in units of 0 = 0.

i )\,’/6 U,’/6 O','/O'
1 1 0 1

2 2 1 4/3

3 2 1 9/5

4 -1 1 37/15

dynamic simulations, using the HOOMD-blue package [34,35],
at constant temperature (NVT) and constant pressure (NPT)
in a three-dimensional system composed of 2048 particles in
a cubic box with periodic boundary conditions, interacting
through a continuous pair potential obtained by the addition
of three different Fermi-Dirac distributions,

Umed — M A"(ﬂ), )

with @ = 0.080 and the other coefficients given in Table I.

The potential illustrated as the smooth curve in Fig. 1 was
chosen to mimic the three length scales and energies scales
employed in the one-dimensional case. The three length scales
are identified by the change of the slope in the force [4].
The accessibility of the three length scales and the presence
of the density anomalous region in the stable region of the
pressure-temperature phase diagram is obtained by making
the forces smooth and positive [36]. Units are reduced as in
the 1D case, except for pressure and particle density, which
are reduced as P* = Po3/e and p* = o3p.

The pressure versus temperature phase diagram is shown
in Fig. 4. At low temperatures, the system presents gas,
LDL, HDL, and VHDL phases. Gray lines are the isochores
p* =0.12-0.40 and solid circles indicate gas-LDL, LDL-
HDL, and HDL-VHDL critical points. Similarly to what
happens in the 1D case, in the vicinity of both LDL-HDL and
HDL-VHDL critical points, there are TMD lines located in
the stable region of the pressure-temperature phase diagram.
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FIG. 4. Pressure vs temperature phase diagram for the 3D case.
The lighter lines are isochores for p* = 0.12-0.40, the solid lines
the TMD lines, and solid circles are the (estimated) location of the
critical points.
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FIG. 5. Thermal expansion coefficient vs pressure for 7% =
0.48-0.68.

In both cases the TMD lines seem to approach the critical
pressures [37], allowing us to test if the oscillatory behavior
observed in « in the one-dimensional case can also occur in the
3D case.

This behavior is observed in Fig. 5, where the thermal
expansion coefficient is drawn as a function of the pressure for
different fixed temperatures 7* = 0.48—0.68 in the vicinity of
the LDL-HDL critical point. As in the 1D case, o goes to —oco
as P — P_ whileitdiverges to +o0o0as P — P atthe critical
temperature. Since the LDL-HDL critical point occurs at a
reasonable large temperature, the oscillatory behavior is quite
pronounced. The large increase of &« vs P* around P* = P} =~
0.5 is a signature of the presence of criticality, while the change
in sign shows the existence of the TMD. Since the oscillation
happens above the critical temperature, it is possible to identify
the criticality even if the critical temperature would not be
accessible. In the case of the thermal expansion coefficient in
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the vicinity of the VHDL-HDL critical point, the oscillations
are more subtle. This behavior would be more visible if the
coefficient would be computed in close vicinity of the critical
point, which is more challenging given that the HDL-VHDL
critical point occurs at much lower temperatures where the
simulations are more costly.

IV. CONCLUSIONS

In this paper we used an exactly solvable one-dimensional
lattice model and molecular dynamic simulations of a three-
dimensional fluid model to show that the three length scale
core-softened potential can be designed to exhibit three liquid
phases (LDL, HDL and VHDL), two liquid-liquid critical
points and two density anomalous regions. In addition, we
propose that the oscillatory behavior observed in the thermal
expansion coefficient close to criticality can be considered as
a signature of the connection between a liquid-liquid critical
point and a region of anomalous density increase, in the
studied models. In the particular case of water, the hypothesis
of a liquid-liquid critical point is still under debate due to
the impossibility to experimentally probe the system in its
expected location, at temperatures below the homogeneous
nucleation temperature. We also propose that measurements of
« as a function of pressure could be performed at temperatures
well above criticality, where the system can be accessed (even
though metastable), and used as a tool to test for the presence
of a metastable second critical point.
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