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the glass transition
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Abstract

The out-of-equilibrium behavior of the frustrated lattice gas, a model of structural glasses, is
described, showing many of the essential features of glass phenomenology. The relation with
well-known spin glass models may help in understanding many controversial issues related with
the liquid–glass transition and glassy dynamics of many physical systems. c© 2000 Elsevier
Science B.V. All rights reserved.
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Many theoretical aspects of the structural glass transition and the nature of the glassy
phase (see e.g. the articles in Ref. [1]) are still poorly understood and as the involved
physics gets more and more complex, the lack of a tractable microscopic model is
felt. Little, analytical progress has been made with popular models based on Lennard–
Jones potentials which, on the other hand, have been extensively studied via molecular
dynamics simulations [2]. Meanwhile, in the �eld of spin glasses, disordered magnetic
systems which share many physical properties with structural glasses, a reasonable
theoretical understanding of the basic physics has been achieved at least at the mean
�eld level [3,4]. Recently, it has been found that the equations describing dynamic
correlations and response functions of a kind of mean �eld spin glasses above the
transition temperature are formally the same as those found in the mode coupling
theory of supercooled liquids [5]. This points to a deeper analogy between the physics
of spin glasses and structural glasses than previously thought. Nevertheless, up to now
we do not know to which extent this analogy can be pushed forward. Some important
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di�erences between these two kinds of systems are evident: while a de�ning feature
of spin glasses is the quenched disorder and frustration, no such quench disorder is
evident in structural glasses. Another important di�erence is the fact that the dynamical
variables in a spin glass are localized in space and do not di�use as the molecules in a
supercooled liquid. We would like to have at hand a simple, yet non trivial microscopic
model of supercooled liquids in which we could apply the fruitful techniques developed
in spin glass theory.
A possible such model is the frustrated lattice gas introduced some years ago [6,7].

The model, in a d-dimensional lattice, is de�ned by the Hamiltonian

H =−J
∑

〈ij〉
(�ij�i�j − 1)ninj − �

∑

i

ni : (1)

There are two kinds of dynamical variables: the local density or occupation ni = 0; 1
(i=1; : : : ; N ) and the particles internal degrees of freedom, �i=±1. The usually complex
spatial structure of the molecules in glass forming liquids, which can assume several
spatial orientations (here we take the simplest case of only two orientations), is in part
responsible for the geometric constraints, imposed by the neighbors, on their dynamics.
This hindrance e�ect is encapsulated in the quenched random variables �ij =±1. The
key role of the �rst term of the Hamiltonian is that when J → ∞ the (site) Frustrated
Percolation [6,7] is recovered, where no frustrated link can be fully occupied, implying
that any frustrated loop in the lattice will have a hole and then �¡ 1, preventing the
system from reaching the close packed con�guration. Finally, � represents a chemical
potential ruling the system density (at �xed volume) and, by taking � → ∞ while
keeping J �nite, we recover the well-known Edwards–Anderson spin glass model.
The equilibrium properties of the model have been numerically studied by Nicodemi

et al. [8,9]. A spin glass susceptibility, associated with the internal degrees of freedom,
has been found to diverge at � ' 5:5, corresponding to a density � ' 0:67. Meanwhile,
the compressibility associated with the density variables does not present critical behav-
ior but only a maximum as observed in many glass-formers. Time-dependent density–
density correlations in equilibrium dynamics show a two step relaxation that can be
well �tted by stretched exponentials. While these results are important in showing that
the FLG presents a qualitatively similar behavior as many real glass formers, it is im-
portant to note that glasses are essentially out of equilibrium systems with relaxation
times spanning many orders of magnitude. Consequently, one should look at the out of
equilibrium dynamics of the model in order to gain insight of the experimental behav-
ior of glasses. A characteristic feature of glassy systems is their history dependence.
The response to a perturbation applied at a particular time tw will persist for very
long times, a phenomenon called long-term memory. This long-term memory prevents
the system from reaching equilibrium and two times quantities like correlations and
responses lose time translational invariance (TTI). In other words, two times quanti-
ties depend explicitly on the observation time and on the time when the perturbation
was applied, this kind of behavior being known as physical aging. Aging dynamics is
present in the FLG both in density–density correlations as well as in correlations of



76 D.A. Stariolo, J.J. Arenzon / Physica A 283 (2000) 74–79

Fig. 1. Density autocorrelations after a quench to �=10 at T =1 and J =10 for L=20. The waiting times
range from 25 (bottom) to 217 (top) and the averages are over 50 samples.

the internal degrees of freedom [10,16] after performing sudden quenches in the value
of the chemical potential from a very small value characteristic of the liquid phase to
a high value corresponding to the glassy phase. Performing a quench in � is similar to
the application of a sudden compression, we raise the density of the system keeping the
ratio �=J. 1 in order to prevent close packing. From Fig. 1 we note that for waiting
times of the order of 215 or greater and small observation times, the system enters
a quasi-equilibrium regime (TTI approximately holds), falling out of equilibrium for
longer time scales of the order of tw. This 3D lattice has linear size L = 20 so one
immediately notes that it will be very di�cult, if at all possible, to reach equilibrium
in the glassy phase. This is more clearly seen when one observes the evolution of the
density as the chemical potential is slowly increased.
In Fig. 2 we see that for �¿1 the density depends on the cooling rate. Cooling at

slower rates allow the system to reach greater densities, slowly approaching a limiting
density near � ≈ 0:67 as the cooling rate gets slower. This cooling rate dependence is
another characteristic feature of structural glasses. The true equilibrium density would
be attained at an in�nitely slow cooling. On extrapolating our asymptotic values to zero
cooling rate we obtain a �eq ≈ 0:68. This behavior should mean that true equilibrium is
practically avoided in this system. This resembles what is found in the spherical p-spin
spin glass. In that system, after a quench from a high temperature to a sub-critical one,
the energy relaxes not to the equilibrium value, but to a threshold value greater than
that of equilibrium. In the thermodynamic limit O(N ) barriers prevent the system from
escaping these “threshold” states, true equilibrium is never achieved and the system
ages forever [11]. In the present model an asymptotic value of the density smaller than
the equilibrium one would indicate that a similar mechanism as in the p-spin model is
at work. We must note, however, that contrary to what happens in the p-spin, in our
model activated dynamics may be present and, in a �nite system equilibrium eventually
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Fig. 2. Cooling rate dependence of the density. The value of the chemical potential � is increased by ��
at each MCS. The linear size is L = 6.

Fig. 3. Decay of the speci�c volume after a quench to � = 10 for a lattice with L = 6. The solid line is
a power law �t over the last two decades. v(t) = v∞ + at−�, with � ≈ 0:47 and v∞ = 1=�∞ ≈ 1:48
(�∞ ≈ 0:673).

will be reached. In order to test this possibility we followed the time evolution of the
density after a quench in a small sample with L= 6. Up to the times of the order of
107 MCS the density is relaxing slowly to an asymptotic value �∞ ≈ 0:673 in close
agreement with the �nite cooling rate experiments as shown in Fig. 3.
Finally, we show results from aging simulations performed at constant density. In

this system this corresponds to �xing the chemical potential and performing a quench
in temperature. In Fig. 4 we see the decay of density autocorrelations at a constant
density �= 0:67. This density was chosen as being a little smaller than the presumed
threshold value. As expected, in this case the system can explore more e�ciently the
entire phase space and the dynamics soon becomes ergodic with TTI. Conversely in
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Fig. 4. Decay of the density autocorrelations after a quench at a constant density. Note that for �=0:67 and
moderate waiting times the dynamics becomes stationary and aging stops.

an equivalent simulation with �xed density �= 0:68, i.e., slightly above the threshold,
the system gets frozen and the correlations do not decay to zero in �nite timescales
for large waiting times (see Fig. 4). This again is similar to what happens in the
p-spin model when one �xes the energy of the system in values above and below the
threshold, respectively. In a system which does not present this kind of behavior, e.g.
the Sherrington–Kirkpatrick spin glass, this abrupt change around a particular energy
is not expected to occur.
A crucial test for the possible p-spin like behavior of the frustrated lattice gas is the

characterization of the so-called “
uctuation–dissipation ratio” [12]. The exactly solv-
able spherical p-spin is characterized by a constant value of this quantity. A constant
value is characteristic of systems with one step of replica symmetry breaking (1RSB)
and it is believed that real glasses should behave this way. Work in progress indicates
that the FLG presents a constant FDT ratio [13,16]. It would be interesting to obtain
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a mean �eld limit of this model where analytic calculations can be accessible. Some
work in this direction has already been done [14,15].
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