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Abstract We simulate the dynamics of a muitineuron model (RS model) witli an energy

function given by tile product between the squared distances in phase space between the state of

tile net and the stored pattems. We obtain the relative frequency f(m~) that an arbitrary pattem
is retrieved from an initial overlap m~ and estimate the size of the basins of attraction for different

activities a. Two limit cases are taken into account : when pattems and antipattems are stored

(p.a.s.) and when only the pattems are stored (o.p.s.). For the a =
0.5, p.a.s. nets a limit for the

load parameter was not found, but for the other cases (a,0.5 or o.p.s. configuration) the

relative size of the basins of attraction may become too small.

Most common models for neural networks consist of systems of a great number of

interacting spins (neurons) [1, 2] where each configuration is characterized by an N-

dimensional vector S, given by

S
=

(Sj,
,

SN ) ; S;
=

± (1)

The Hamiitonian function, and hence the configurations that minimize the energy of the

system, is determined by the spin interactions considered by a given model. For the attractor

neural network, when any set of P chosen states of the net (pattems), say (~,

~1 =

1,
...,

P, are implemented as minima of the Hamiltonian through convenient, a priori
prescribed tuning of the interactions strengths, the net is said to have leamt these pattems. In

this case, a given pattem (~ is retrieved when, starting from an initial, unstable configuration
that is sufficiently similar to the pattem, the net relaxes towards and stabilizes at the

(minimum energy) state ~~.
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mento de Pessoal de Nivel Superior (CAPES) and Fundaq6es de Amparo h Pesquisa dos Estados do Rio

de Janeiro and Rio Grande do Sul (FAPERJ and FAPERGS).
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The most extensively studied example of such idealized systems is the Hopfield model,

which in its original version considers the following Hamiltonian [2] :

E
=

jj J,~ S,
S~

(2)

,,j i

and the synaptic matrix J,~, associated to the strengths of spin interactions, is given by Hebb

leaming rule [2, 3] :

J,~ =

jj f,~f~~ (3)
N

~

with (~, ~1 =

1,
,

P, being P vectors in the phase space representing the stored pattems.
This synaptic matrix J;~ guarantees that these pattems are strongly correlated to minima of the

Hamiitonian equation (2), if they are uncorrelated among themselves and the load parameter

a, defined as

a =

~
(4)

is less than a critical value a~ =
0.14 [4]. In this limit case the Hopfield model describes a

content-addressable memory. The uncorrelated pattems are chosen by assigning equal
probability a =

0.5 of each spin if to be + or at random. The value a defines the activity

of the net and lower values of a (favoring spin +1, for instance) introduce correlation

between the stored memories. Several attempts have been made to model a neural network

capable to handle satisfactorily with correlated pattems and with a higher critical load

capacity, here measured by a~, both by introducing modifications in the Hopfield Hamiltonian

or by proposing new models (see, for example, Refs. [4-11]).
Recently, de Almeida and Iglesias [12] proposed a new Hamiltonian function that is related

to the distances in phase space between the state of the net S and the P pattems
(~. This model, named RS after the brazilian state where the model was created, includes

multispin interactions and can be written as

p l~ N

E
=

N fl jj (S~ ff)~ (5)

~=i
~'~,=i

The expression in the product is the squared Euclidean distance between S and

(~, i.e., E is a non-negative function and E(S)
=

0 if S
=

(~, for any ~1=1,
.,

P.

Consequently the pattems are always minima of the energy function. The capacity of the

network, as well as its ability to handle with correlated pattems are greatly and qualitatively
enhanced in comparison with previous models. Also, if (~ is a minimum of equation (5), it is

not a direct consequence that its antipode -(~ (antipattem) should also minimize the

Hamiltonian, as it happens in the Hopfield Model. Nevertheless, one can always explicitly

store the antipattems, if one wishes so. This feature of the model yields to two different

limiting cases for uncorrelated pattems : when only the pattems are stored (o.p.s.) or when

both pattems and antipattems are stored (p.a.s.).
The above considerations were directly inferred from equation (5) and further conclusions

require deeper analysis of the dynamics implied by the model. As the system under

consideration takes into account a great number of interacting neurons, there are two

different approaches to the problem : mean field calculations through statistical mechanics

techniques, which preliminary results have been presented in reference [12], and numerical

simulations. In this work we present some computer simulation results for the two limiting
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cases (o.p.s. and p.a.s. configurations) where we consider different load parameters and

activities for the random pattems. In what follows we briefly explain the procedures to obtain

the relative fraction f (mo) of times that an arbitrary pattem is retrieved when starting from an

initial state with an overlap mo, following the prescription by Forrest [13]. We analyze the

results, obtain an estimate of the size of the basins of attraction and show that the load

capacity of the net has been greatly improved.
Consider a network of N neurons and a zero-temperature dynamics such that a spin is

flipped whenever the energy of the net is lowered. Equation (5) gives a lot of information

about the energy landscape in phase space, but it is not in an adequate form for numerical

purposes. It can be rewritten as

p

E
=

N fl (i m~ ) (6)

~=i

in the o.p.s. case, or

p

E
=

N fl (i m( (7)

~=i

in the p.a.s. configuration [12]. In equations (6) and (7) m~ stands for the overlap of the state

of the net S with the ~1-th pattem :

m»
=

Z if St (8)

,

~

i

The numerical simulation is performed as follows :

I) initialization : construct P random pattems with activity a, and an initial state that has a

given overlap mo with one of the stored pattems, chosen at random. Calculate the overlaps

m~ with the other ones through equation (8) and then the initial energy through (6) or (7) ;

it) consider a virtual flip in the I-th spin and calculate virtual overlaps mf by

mi
=

m»
~

S, if ; (9)

iii) obtain the virtual energy E* through equations (6) or (7) using the overlaps

~ *.

» ,

iv) whenever E* WE flip the spin and update the energy and overlaps
v) the updating is performed sequentially until the system reaches a stable state ;

The steps (I) to (v) are repeated several times and the averaged frequency f(mo) that the

randomly chosen pattem is retrieved from an initial overlap mo is obtained. We used the

multispin coding approach, as prescribed by Penna and Oliveira [14, 15]. Although the

number of arithmetic operations per updating are of the same order as in the Hopfield model,

more computing time is required because here the energy function is calculated through the

product of the overlaps instead of the sum as in the Hopfield-Hebb algorithm. For more

computing details see reference [17].
Figure shows the relative frequency f(mo) for the p.a.s. configuration and 0.5 activity,

uncorrelated sets of memories. The nets considered have N =128, 256 and 512 and

simulations were performed for
a =

0.1, 0.5 and I. The average values f(mo) were obtained

considering 200 relaxations (50 for the N
=

512 net) for each of five different sets of

memories for every point of the figure and the estimated errors are less than 10 9b. As the

pattems are always minima of the energy function, when a pattem is retrieved the final
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Fig. I. Fraction f(mo) of recalled pattems with an initial overlap mo for N
=

128 (O), 256 (6) and

512 (a) and
«

0.1, 0.5 and I iri the p.a.s. case, and uncorrelated pattems.

overlap is always I, I.e., there is no errors in the retrieved states. Considering the p.a.s. case,

similarly to the Hopfield model, curves corresponding to nets with the same value of the load

parameter a
but different number of neurons N (and hence different number P

=

NtY of

stored pattems) superpose [13], and the rate at which f(mo) increases form 0 to I becomes

more pronounced as the size of the system N increases for all values of a in the figure. As

suggested by Forrest [13] this behavior approaches a discontinuity at m~(a) as N
~ cc

implying that even for
a =

i the net keeps its retrieving abilities. The value lim m~ (a gives
N

~ w

a measure of the size of the basins of attraction of the memories. Rough estimates, taken

directly from figure I, are m~(a
=

0.1)
=

0.12, m~(a
=

0.5)
=

0.43 and m~(a
=

1)
=

0.61. Comparisons with the Hopfield model value mf(a
=

0.1)
=

0.37 shows that, even at

very low a the size of the basins of attraction are greatly enhanced in this model. Also, the

dependence of m~ with the load parameter a
is much smoother than in Hopfield Model (the

basins of attraction are not drastically reduced), because here there is no critical value for the

load parameter, at least in the region
a w I. This effect could originate from the elimination

of spurious states by the higher order synaptic connections considered by the Hamiltonian

equation (2). (At N
~ cc a few very shallow spurious states with Em 0 may appear in

numerical simulations. At N
~ cc these states merge in an absolute (unstable) maximum at a

point in phase space that is equidistant from every (uncorrelated) stored pattem, in

agreement with mean field (N
~ cc ) calculations [12, 16]). Higher values of

a
do not present

any qualitative difference for the analyzed case but for a expected decrease in the size of the

basins of attraction.

In figure 2, we present f (mo) versus mo for 0.5 activity, uncorrelated pattems in the o.p.s.
configuration for nets with N

=

128, 256 and 512 neurons again, the average is taken over

200 relaxations for each of five different sets of memories (50 for the N
=

512). Here the

different N curves with same number P of stored pattems (and not a) superpose. This can be

explained as follows. The antipattems are located in a region in phase space that is the

specular reflexion of the corresponding region where the pattems are. When antimemories

are also stored (p.a.s. case) these two regions have similar energy landscapes. But when

antimemories are not considered (o.p.s. case), the antipattems region comprises very large

energy states, while its specular image contains the lower energy ones, forming an analogue of

a multi-hole bowl in the closed space defined by the (hyper) surface of the (hyper) cube in
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Fig. 2. f(m~) versus m~ for N
=

128 (O), 256 (A) and 512 (o) and P
=

13, 64 and 128 in the o.p.s.

case, and uncorrelated pattems. Note the different scale on the horizontal axis.

phase space. The greater the number of pattems P is, the bigger the difference between these

two regions and the deeper is the bowl. The pattems are stored inside this big basin whose

center lays in the direction C determined by the sum of all stored uncorrelated pattems. As P

increases, the sizes of the basins of attraction of each memory decrease, I.e. m~ decreases,

enlarging the probability that the net stabilizes in a state which is strongly correlated to the

center of the big bowl. Figure 3 presents a pictorial sketch of the energy landscape in the

phase space for this case. In the limit P
~ cc, the energy of the state in the center of the bowl

goes to zero, the basins of attraction of each stored pattem merge, and there is only one big
basin with a flat, zero energy bottom in the region in phase space which is delimited by a ring
obtained by linking the points associated to the pattems and contains the direction C. Outside

this ring the energy increases monotonically from zero to infinity, reaching its maximum value

at the point C. Hence it is not surprising that in the o.p.s. case the relative size of the basins

of attraction, measured by m~, is determined by the absolute number P while for the p.a.s.
configuration the relative quantity

a =

PIN, that gives a measure of the density of stored

pattems, is the relevant number in defining the size of the basins of attraction. This effect is in

agreement with mean field calculations [16]. Again, the rate at which f(mo) increases from 0

to becomes more pronounced as the size of the system increases and we can see that the net

still retrieves the stored pattems when P is of the order of N, at least for finite nets.

p<~~n p-on

~ B

AE

Iv f iv I» f iv

Fig. 3. -Pictorial representation of the energy landscape in the phase space for the o.p.s.,

a =
0.5 case. For P

~ oJ the direction C, determined by the sum of all stored pattems, is a local

minimum of the Hamiltonian, with E
~

0. In the P
~ oJ the center of the bowl and all the stored

pattems merge in a unique wide minimum.
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Figure 4 shows the plot of f (mo) versus mo for different activities (a
=

0.2 and 0.4) for the

p.a.s. case. Here too, as in the o.p.s. configuration, the curves with same number P of stored

pattems superpose and again the effect of increasing the size N of the net is to pronounce the

rate at which f(mo) increases from 0 to 1. It also implies that the size of the basins of

attraction decreases with a. The explanation is similar to the o.p.s., a =

0.5 configuration
there is a high energy region in the phase space, comprising now the a =

0.5 states, where

there are not minima of energy. This region separates two multi-hole-bowl-like regions, each

of them containing all the pattems or all the antipattems and, as the activity a decreases, the

bowls grow deeper, more energy-decreasing paths lead from an initial state to the center of

the bowl and the initial configuration should be nearer to a given pattem in order to retrieve

it : more information is required to distinguish between correlated pattems. Nevertheless it

stiff represents an enhancement in comparison to the original or modified Hopfield model [4].
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Fig. 4. f (mo versus m~ for the p.a.s. case with activities : a) a =
0.4 and b) a =

0.2 for two different

values of P and for N
=

128 (O), 256 (6) and 512 (o).
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In figure 5, we present the results for the o.p.s. configuration for low activity pattems and

the only effect when comparing to the a
=

0.5 case is the reduction of the size of the basins of

attraction.
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Fig. 5. f(m~) versus mo for the o.p.s. case with activities : a) a =

0.4 and b) a =
0.2 for two different

values of P and for N
=

128 (O), 256 (6) and 512 (o). Note the different scale on the horizontal axis.

In conclusion, we presented here the results of numerical simulations for the Hamiltonian

equation (5), considering two limiting cases : when both pattems and antipattems are stored

(p.a.s.) and when only the pattems are considered (o.p.s.). In the case of a =

0.5, the

capacity of the net is greatly improved, specially for the p.a.s. nets, compared to the Hopfield
model. Also the retrieval of memories are always perfect, I.e., the final overlap of a retrieved

state is always I, reflecting the fact that the pattems are always minima of the energy function.

The Hamiltonian function can be expanded in a sum of different orders of interactions and, in

the p.a.s. case, it can be truncated at the second order term, recovering the Hopfield model.

As this cut-off is reasonable only when the load parameter is low and the pattems are

uncorrelated 11 2, 16], the critical value a~ =

0.14 may be regarded as a limiting value for the

validity of the approximation implied by the cut-off at the second order term.
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A novelty is that, in the o.p.s. configuration, the size of the basins of attraction scales with

the number P of stored pattems, because of the bowl-like shape of the energy in phase space.
The p.a.s. configuration seems to occupy more efficiently the phase space. On the other hand,

in the o.p.s. case the basins of attraction may become too small. This reduction in the size of

the basins is also verified for low activity pattems, for both p.a.s. and o.p.s. nets.

A limit value for the load parameter a for a =

0.5, p.a.s. nets has not been found. Anyway,
the pattems are always zero-energy states of a non-negative Hamiltonian and hence the

definition of a limit value for
a may require some adjustment in this model : for example, a

limitation may be imposed by the velocity (or some other parameter) in retrieving the

pattems rather than by the ability in addressing them, although up to now we did not detect

such effect. Work in this direction is presented elsewhere ii?].
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