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Abstract. The capability of the Hopfield model in generalizing concepts from examples is

studied through numerical simulation. Noisy examples
are taught and we test if the network

grasps the underlying concepts. Several parameters are modified along the simulation: the

number of concepts and examples and the initial noise in the examples. It is obtained the first

order transition from the retrieval phase to the categorization phase predicted by the
mean

field

theory.

Nowadays the study of neural networks is focused mainly in the ability of recalling stored

patterns that
are attractors (stable fixed points) of the network dynamics. However, analc-

gously to real systems, other properties deserve to be studied, among them, the capability of

generalizing concepts from examples. When
a

given set of examples is learned,
we must be

able to recognize the essential information embedded in each example, learning the underlying
concept exemplified by them. This categorization process improves both the way memories are

stored in real systems and the handling velocity of information. As stressed by Virasoro [I],
this is not a

choice but rather a necessity.

To define the generalization problem, let us denote each of the P concepts by an N-

dimensional vector ((~) with components ~l and the s examples of each concept by ((~")
where ~ =

l,..
,

P and
v =

I,,
,

s.
Each example is created from one concept introducing a

certain amount of noise, measured by
r.

The noise parameter r is defined
as

the probability
that the I-th neuron in an example is dilserent from the corresponding neuron in the concept,

I,e. P((f"
=

-(f)
= r =

(I b)/2, while b is the overlap between
a concept and its examples.

The concepts are
randomly chosen uncorrelated patterns with probability 0.5 of each

neuron

state be ~l. Remark that only the examples are learned, not the concepts.

Symmetric spurious states, that disturb the dynamics when other properties
are

studied,
play

an
important role in the categorization process: in the generalization phase, the system

extracts the common information from the examples of a given concept ~ and the state C" (or
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one near it) that lies in the "center of mass>' of all examples and is given by

I,Cl
= Sgn

£ if") (i)
v=1

becomes
a

stable fixed point. This state overlaps
on average equally with all s examples and is

the effectively learned concept. In this context, the desired situation occurs when these states

are
absent if the patterns are not correlated but this s-symmetric central state appears when

similar patterns (the examples)
are stored [2].

In the Hopfield model, that may be described by the energy function

E
=

) ~ ~ m(v (2)
~i ~i

where m~v is the overlap with the examples

m»v =

j i~ff"S; (3)

1

the particular examples
are no

longer stable when the system enters in the so
called general-

i2ation phase if the number of concepts is finite (if it is extensive, they
are never

stable). As

a consequence the network cannot recognize
a

given real12ation of
a concept (an example) but

just the concept itself. One possible measure of the generalization error is the Hamming dis-

tance e between the original concept (not taught) and the generalized state (effectively learned)
for

a
certain number

s of learned examples:

where m~ is the overlap with the ~-th concept

~@ ~ ~i ~i (~)~ ~

,

The generalization in the Hopfield model for tx' # 0 (tx' e number of concepts/number of

neurons)
was

previously studied through numerical simulation by Miranda [4]: above
a critical

number of examples sc, the generalization
error

decays rapidly following
a power law if

~w

s~~,
where decreases linearly with tx'). Miranda also found that sc grows exponentially with the

noise level and linearly with tx'. The transition to the generalization regime is continuous,
while analytical calculations [5] predicted it to be discontinuous.

The T
=

0 simulation
was

performed for network sizes up to 8192 neurons for tx'
=

0 and

0.05. The algorithm follows the steps:

(I) a set of P concepts is generated;

(it) for each concept, one example (s
=

I) is generated with noise b and taught to the network;

(iii) the initial state is set in one of the original concepts (or one of the examples) and
a

neuron is flipped whenever this lowers the energy until
a

stable state is reached. The

general12ation error e
is then measured;
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(iv) another example is created (s
- s + I) and steps (it) and (iii)

are repeated.

The step (iii) is repeated for many initial states and for several different sets of concepts,
yielding the averaged generalization error e. An important difference from reference [4] is that

there only the stability of the concepts were tested, while here the initial state can also be

set in one of the examples since the transition found in analytical calculations (for tx'
=

0)
refers to the situation when the individual examples stop being stables. The multispin coding
algorithm [7] was used in order to save computer memory and decrease computational time.
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Fig-I. Average generalization error e versus the number of examples s for a'= 0 (P
=

5) and
=

0.25 and 0.6. The network sizes are N
=

4096 (empty symbols) and N
=

8192 (filled symbols). Note

that for
s < sc we

have two values off, depending
on

whether the initial state is the concept (circles)

or the example (boxes). For
s > sc, both curves merge. The analytical prediction corresponding to

the case when the initial state is the example is indicated by the full line whie for the concepts it is

the dashed line (after [5]).

Figure I shows the generalization error e versus the number of examples s in the limit tx'
-

0

(not studied by Miranda [4]) and two different values of b. This limit is achieved by holding
fixed the number of concepts (in this case 5) and increasing the size of the network (up to 8192).
The averages were taken over 5 distinct sets of concepts and, for each set, all concepts and

up to a maximum of 20 examples were tested. The main new result is that the discontinuous

transition predicted by the
mean

field theory [5] shows up. The step-like form of the simulation

curve e, clearly seen for small s, demonstrates that
an

odd number of examp les is required to

correctly extract the concept, while doubts are created when the number is
even:

the network

cannot decide between two situations. When the number of examples is even, some values Cf,
equation (I),

are zero, the correspondent state of the I-th neuron in the concept is not defined

and the generalization
error does not decrease when an even example is learned by the network.



2022 JOURNAL DE PHYSIQUE I N°11

These steps do not appear in the general12ation
error curve in previous calcula tions [5] because

the substitution of binomial (discrete) distributions by a
Gaussian (continuous)

one masks this

effect smoothing the curves. This approximation
can also contribute for the small discrepancy

between the predicted critical number of examples [5] and the
one

found in the simulations

(it may also be due to replica symmetric unstable solutions). The actual shape of the curves,

obtained with discrete distributions [6], shows these fine details. Note that if the initial state

is set in one of the examples, the simulated
curves fit very well the analytical prediction [5]

(solid line) for large networks. On the other hand, when one of the concepts is chosen as the

initial state of the dynamics, we find that for s < sc the net stabilizes in a different state,
yielding another value for the error e:

both examples and concepts are
stable and have distinct

basins of attraction. As predicted in reference [5], for
s > sc, the generalization

error
obbeys

the equation

f - lerfc (~~i~~~~~~) ~~j (6)

Here we found that this solution also holds for s < sc, as can
be seen in fig. I (dashed line) if the

initial state of the dynamics is one of the concepts. Moreover, the conclusions of Miranda [4] do

not hold in the tx'
=

0 limit: from equation(6), the generalization error, for great s, no
longer

follows
a power law but has

an
exponential decay. The model

was
also studied for tx'

=
0.05
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Fig.2. Average generalization error versus the number s of examples for a'
=

o.05, b
=

0.6 and

N =1024 (o), 2048 (D), 4096 (hi and 8192 (O). For s < sc the curves, for both concepts (empty
symbols) and examples (filled symbols)

as
initial states, tend to be

a
flat plateau in e =

o.5 as
N

increases. The full line is the mean field prediction (after [5]).

(Fig. 2). Dilserently from the previous case, here the plateau must no
longer be at the value

of
r

but at 0.5 [5]: below
a

certain critical number of examples, the network will always evolve
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towards
a

spin glass state that has
no

macroscopic overlap with the concepts. In this limit the

dependence on
the size of the network is too strong: the 0.5 plateau is not achieved for small

networks but, as N increases, the curves slowly approach their asymptotic behavior. Also,
there is

no
dependence

on
the initial state, the curves for examples and concepts are

almost

the same. Again the curves match the analytical predictions [5] and, comparing with them

(solid line), it may also be argued that the continuous transition found by Miranda was just

an elsect of the finite size of his simulations, although his other conclusions seems to remain

valid (at least for the sizes used here).
Virasoro ill pointed out the analogy between the lack of ability in recognizing examples

belonging to a
certain class (although not the class itself) in

a
synaptic dilution context and

a mental disorder known as prosopagnosia: when synapses are cut, the system first loose the

capability of discerning the examples and further the concepts (agnosia). The same elsect

appears in the Hopfield model when too many examples are taught (for
a

finite number of

concepts) the basins of attraction of the examples are
ruled out when their number is greater

than a critical value. If one has
an

extensive number of concepts, the examples
are never

stable and the system is always in a
prosopagnosia state. This is not relevant when the task

proposed to the system is to classify a given pattern in a certain class or category and it is

conceptually correct to denominate the phase appearing for
s > sc in the Hopfield model

as

a categorization phase. However, when the purpose is to simulate systems that must preserve

the identity of the particular examples, as well as extract the common information between

them, the denomination of "generalization phase" is somewhat imprecise. Also, when the

system stores a given hierarchy of patterns, including classes inside classes several times, it

is no longer possible to control with temperature the desired level on the hierarchy [8]. This

would only be possible if the system preserved the individual basins of attraction. Thus, the

ideal situation consists of a
big basin of attraction centered at the concept with smaller basins

related to each example lying inside the big basin, around its center: general ideas are easier to

remember than particular examples of such ideas. This situation is achieved by other models,
for instance, the liS model [3].

Summarizing, we presented results for the Hopfield model and Hebb learning rule storing
sets of correlated patterns with each set consisting of some particular examples of a given
concept. The results for tx'

=
0 and a' # 0 and several degrees of correlation match very

well the analytical predictions [5]. Nevertheless, it would be interesting to study the size of

the basins of attraction of examples and concepts as their number increases [3] as
well the

mean convergence time, in order to verify whether there is
or not a change of behavior for

some value of s. In particular, to test if the twofold solution found for tx'
=

0 and
s < sc

has similar basins of attraction
or not. It would also be interesting to investigate systems

for which a new symmetric phase (or more than one, depending on the number of levels of

hierarchy) appears when sets of correlated patterns are
embedded in the network [2, 3]. The

Hopfield model presents such a phase (for all values of b) when examples
are learned in pairs

[9] and, in this case, the desired retrieval level can be controlled with temperature. As a final

remark,
a

suitable and more general definition of the critical number of examples sc to start

generalization should not make reference to the stability of the examples or the
mere

existence

of the s-symmetric state as, for instance, the one given by Miranda [4] that considers a change
in the generalization error decaying velocity.
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