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Abstract

The problem of effusion is studied using Monte Carlo simulations and scaling analysis.

Particles confined to the interior of a container undergo a random walk with step size d. If a
hole is opened in one of the container walls, an outgoing diffusive current of particles will exit

through it. Effusion is exponentially fast with the characteristic time dependent on d, the
container volume, and the size of the pore. It is found that if the effusion time is properly

scaled, all the data can be collapsed onto one universal curve independent of the geometry of

container and the pore.

r 2005 Elsevier B.V. All rights reserved.
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The problem of determining the effusion time of solute through a pore of a vesicle
[1,2] is of great practical interest in a number of different contexts ranging from the
design of efficient drug delivery systems [3,4] to understanding the generation of
post-synaptic currents at chemical synapses [5,6].
Formulated in terms of a diffusion equation the problem is particularly difficult,

since the boundary conditions required to tackle it are of mixed type—a combination
see front matter r 2005 Elsevier B.V. All rights reserved.
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of Neumann and Dirichlet. An exact analytical solution is, therefore, unlikely and
one is forced to use either numerical methods or direct Monte Carlo simulations of
the effusion process. In this paper we shall take the second route. We simulate
particles, undergoing a random walk with step size d and step time tm, confined to
the interior of a vesicle.
The geometries that we are interested in are shown in Figs. 1 and 3. We start with

N particles randomly distributed inside the vesicle. At time t ¼ 0 a pore represented
by an absorbing surface is nucleated. At each Monte Carlo step every particle
attempts to make a random move to a new position. There are three possible
outcomes: (1) the particle hits the wall, in which case the move is rejected, (2) the
move is successful and a new particle position is recorded, (3) the particle is removed
from the vesicle as it passes through the pore. The number of particles inside the
vesicle decreases exponentially [7–9] as

NðtÞ�e�t=t , (1)

where t is the characteristic effusion time.
Purely on dimensional grounds, the time of effusion must have the form

t ¼
tmR2

d2
f

d
a
;
R

a

� �
, (2)

where f ðx; yÞ is a scaling function of two variables. For d5a the particle density
rðr; tÞ satisfies the diffusion equation

qr
qt

¼ Dr2r , (3)

with

D ¼
d2

6tm

(4)

and reflecting boundary conditions on the surface of the vesicle and absorbing
boundary condition at the pore.
2a2R 2R 2a

(a) (b)

Fig. 1. Two dimensional sections of 3d figures. Figure (a) shows a vesicle with a circular pore of radius a

on its surface. In figure (b), a square hole of dimension 2a � 2a is located symmetrically at the center of

one of the cube’s faces.
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Using a heuristic argument, based on results for the steady state flux of particles
passing through a small hole in a planar wall [10,11], it is possible to argue that in the
limit a5R and d ! 0 the effusion time should be [12,13]

t ¼
p2

32AP

� �1=3
V

D
, (5)

where A and P are the area and the perimeter of the pore and V is the volume of the
vesicle. Thus, for a circular pore the effusion time diverges as 1=a. The scaling
function is then,

f ð0; yÞ�y for yb1 . (6)

When the step size is larger than the pore size, Rbd4a, we expect the time of
effusion to diverge with the diminishing area of the pore. Indeed, in this limit, the
simulations find

td2

R2
�
tmdR

a2
, (7)

which means that the scaling function is

f ðx; yÞ�xy for xb1; yb1 . (8)

The fact that for R=ab1, f ðx; yÞ is proportional to y for both large and small values
of x suggests that it can be written as

f ðx; yÞ 	 gðxÞy for yb1 , (9)

where for xb1, gðxÞ�x. The form of gðxÞ can, in principle, depend on the vesicle and
the pore geometries.
Eq. (9) implies that for a given geometry, if one plots the scaled effusion time

t
 �
td2a
tmR3

(10)

versus d=a, the effusion times for all the different combinations of d, R and a should
collapse onto one single curve gðxÞ, as long as R=ab1. This is indeed what is found
in Fig. 2.
To further check the robustness of the scaling theory presented above we

now apply it to calculate the effusion time from a cylindrical vesicle of length L and
radius R through a circular pore of radius a located symmetrically on one of the sides
of the cylinder, Fig. 3. On dimensional grounds the effusion time must now be of the
form

t ¼
tmL2

d2
f

d
a
;
R

a
;
R

L

� �
. (11)

Motivated by Eq. (9), we make an ansatz of separability of the scaling function in the
limit L;Rba,

f ðx; y; zÞ 	 gcðxÞypcðzÞ . (12)
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Fig. 2. The scaled effusion time as a function of d=a for various combinations of d, a, and R, such that

a=Ro0:1. The curves from top to bottom are: for cubes with square pores and spheres with circular pores.

A perfect collapse of the data is obtained.

Fig. 3. Cylindrical vesicle of length L and radius R with a circular pore of radius a on one side.
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Furthermore, the presence of V in Eq. (5) implies that the effusion time should scale
with the volume of the vesicle. This means that the scaling function pcðzÞ�z.
Therefore, as long as L;Rba, if one plots the scaled effusion time

t
 ¼
td2a
tmLR2

(13)

versus d=a, the effusion times for all the different combinations of d, R, L, and a

should collapse onto one single curve gcðxÞ. This is precisely what is found in Fig. 4.
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Fig. 4. Effusion time, scaled as in Eq. (13), for small pores with a=Ro0:1, as a function of d=a for various

combinations of d, a, L, and R, corresponding to the different symbols in the figure. A perfect collapse of

the data is obtained.
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Fig. 5. The effusion time scaled as in Eq. (14) as a function of d=l, for various sizes and shapes of the

vesicles and the pores. A very good collapse of data is found over a wide range of d’s. Deviations appear
only when the step size of the walkers becomes comparable to the size of the container. Under these

conditions the dynamics loses the universality, and the effusion time becomes dependent on the detailed

geometry.
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It should be noted that the effusion time in all the cases discussed above is
proportional to the volume of the container. Furthermore, the presence of the length
scale l ¼ ðAPÞ1=3, instead of just a, in Eq. (5) suggests that the natural scaling
variables should be V and l. Rewriting our previous results in terms of these we
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arrive at

t
 �
td2ðAPÞ1=3

tmV
¼ h

d

ðAPÞ1=3

 !
, (14)

hð0Þ ¼ 3ðp=2Þ2=3. In Fig. 5, we show that when scaled as in Eq. (14), all the data of
Figs. 2 and 3 collapses onto one universal curve. We have also checked that this
scaling persists for pores of other geometrical shapes such as ellipses with different
aspect ratios.
Our results confirm the form of the effusion time found in Refs. [12,13] in the limit

d ! 0. Furthermore, we also obtain a universal scaling function for the effusion time
of a random walk with an arbitrary step size d.
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