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Abstract

We study a set of nonlinear diffusion equations describing the evolution of densely packed
particles under gravity subject to random vibrations. Although the thermodynamics of the model
predicts no phase separation at all, the dynamics displays both normal and reverse segregation
depending on the mass of the species present in the system.
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Among the complex properties displayed by vibrated (or sheared) granular mate-
rials, segregation is one of the more fascinating and less understood. Subject of in-
tense research in the last years, several mechanisms have been proposed to explain the
demixing phenomenon observed in simulations and experiments on granular mixtures.
Size-segregation for example, may occur simply because small particles sift through
the pores among large particles: this geometric mechanism has been called percolation
[1-3]. Segregation may also be due to convection, where large particles take the up-
ward stream but are unable to enter the thin downward stream near the walls. This
hydrodynamic mechanism has been discussed in Ref. [4]. It has also been suggested
that the segregation is a condensation phenomenon [5-8], but this seems to be contro-
versial. Moreover, several studies also deal with only one intruder, either biased [9] or
not [10-13].
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In densely packed systems, crystallization is usually kinetically avoided and one
can ask whether segregation phenomena may emerge from a nontrivial dependence of
particle mobility upon density. For the sake of simplicity one can choose a system
whose thermodynamics is trivial. Recently, we have studied a nonlinear diffusion
equation [14] describing the dynamics of mono-disperse, noninteracting particles in the
presence of gravity. This equation can be thought of as a macroscopic, coarse-grained
description of a gravity driven version of the Kob and Andersen lattice gas model
[15], which has been shown to present several features of vibrated granular materials
such as slow compaction and segregation [16]. The unusual behavior of such a lattice
system comes from the nontrivial dependence of the particle’s mobility on the density,
and most of its dynamical properties are well reproduced by the nonlinear diffusion
model [17].

Whether this simple approach is able to describe the onset of segregation in the case
of a binary mixture is the question addressed in this contribution. Specifically, is it
possible to pass from the normal Brazil-nut effect to its reverse version by changing
some of the control parameters of the system? If so, how can one control the degree of
mixing and the final relative distribution of the particles? To answer these questions,
we adopt the same approach which has proven successful in the monodisperse case.
Specifically, we shall present a preliminary study of a binary mixture of equal-sized
particles, whose segregation mechanism is based on the differential mobility.

The Hamiltonian for this system can be written as

H=gY mh, (1)
J

where the sum is over all particles in the system, m; and 4, are the mass and height
of particle j, respectively.
The exact Helmholtz free energy functional for this mixture is [14,18]
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where p; = p;(z,t) is the local density of specie i at height z and time ¢, y; = m;g/kgT
is the inverse gravitational length and H is the box height.

We assume that the local densities are governed by a continuity equation 0,p:(z, )+
0,Ji(z,t)=0, with the current given by the Fick’s Law, J;(z,1)=—1"(p;)0,u;(z,t) where
I';(p;) is the Onsager’s mobility and g; is the local chemical potential, y;(z,1)=0F/dp;.
Thus, the evolution is described by two coupled nonlinear diffusion equations:
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where the time is now measured in units of 1/I¢kgT.
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Among the several possible density-dependent functionals for the mobility of a
homogeneous system (i.e., without gravity), of particular interest are those that vanish
at a given density p., typical of a dynamical arrest transition. Following Refs. [14,17]
we focus on a power law form, generalized to two particle species:

p1+ p2 )¢'
pL '
Notice that the mobility of one specie is also affected by the particle density of the
other specie, and the mobility of particle i/ vanishes if the total density at a certain
height z is equal or above p.. When pl = p> = p. and ¢; = ¢, = ¢ we recover the
original, mono-disperse case, while if p.=1, ¢;=1 the ith particle is unconstrained. To
complete the description, the boundary conditions have to be specified. In the current
study, the system is closed at the bottom, J(0,7)=0, and at the topmost layer z=H it
is either in contact with a particle reservoir, p(H,t) = pg, or closed, J(H,t)=0 (fixed
number of particles).

We define the jamming transition as the locus in the parameter space (71,72, P> Pk )s
at which a layer of critical density first appears at the bottom of the system, p;(0,c0)+
02(0,00) = min(p., p2). For example, in the particular case of equal reservoir and
critical densities, ph = p& = pr and p! = p? = p,, the jamming transition occurs at

I'(pi)="Topi @(Pi*Pi) (1 - (4)
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This line separates a regime where the dynamics is (exponentially) fast and the station-
ary profile is the equilibrium one (obtained through the minimization of the Helmholtz
free energy), and another regime, at lower vibrations, where the dynamics is slow and
the equilibrium and the stationary profiles no longer coincide. Once the system enters
the latter regime, it gets out of equilibrium and the asymptotic stationary density profile
is approached very slowly. Notice that as in the mono-disperse case, here the critical
line between the two regimes does not depend on the exponents ¢;, but only on the
critical densities.

In the case where the masses are equal, the equilibrium profiles, apart from a possible
trivial dependence on the number of each type of particles, are the same. On the other
hand, the stationary state obtained from the numerical solution of Egs. (3), at low
vibrations, presents a segregated configuration: larger (or more constrained) particles
go to the top while the less constrained (smaller) prefer the bottom part of the system.
This effect is purely dynamical. Interestingly, the profiles seem to present three different
regions, instead of the two appearing in the mono-disperse case [14]: a small slope
(probably going to a flat plateau for t — oo) part at low z, a rapidly decaying region
for large z and, at intermediate heights, a more complex, with one decreasing and one
peaked profile, as can be seen in Fig. 1, for both cases.

The normal/reversed segregation transition can be obtained by opportune tuning of
the control parameters. For example, by changing the relative masses, one can pass
from one phase to the other. This is exemplified in Fig. 2 where the difference between
the centers of mass of both species are plotted as a function of y; (while 7y, is kept
constant). One sees that for small ratio of the mass of particles 1 relative to 2, we
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Fig. 1. Long time profiles for the case where pl = p2 = p. but ¢, # ¢2. The parameters are H = 10,
pe =0.84, ¢; =4 and ¢, = 3. The values of (y;,7;,) are (2.302, 2.302) (left) and (13.812, 2.302) (right).
On the left we can see the normal Brazil-nut effect: larger particles (species 1, dashed line) segregate on the
top of the system; while on the right, the positions are exchanged leading to the reverse Brazil-nut effect. It
is easy to show that for the case on the left, the sum of both profiles is the result obtained in Ref. [14] for
the mono-disperse case.
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Fig. 2. Difference of the height of the center of mass for both species of particles, Ak = hl,, — k2, versus

y1, while y, = 2.302 is kept constant (the other parameters are the same as in Fig. 1).

obtain the normal segregation pattern, with more constrained particles at the top (Ak=
hl. — h2, > 0), while by increasing 7y;, (or, what is the same, the mass of particle
1), the centers of mass exchange positions and the less constrained particles go to the
top (Ah < 0). This transition, in particular the precise mechanism involved and its
experimental realization, have been the center of a recent debate in the literature [5-8].
Work is in progress to obtain a closer comparison of our model with the available
experimental data and previous models.

In brief, we presented macroscopic transport equations describing the phenomena
of normal and reverse segregation in a thermally vibrated system of particles under
the action of gravity. The mechanism of segregation studied by us, purely dynamical,
depends on the differential mobility of particles. It is similar to the percolation mecha-
nism, where small particles, being more mobile, can move downwards more easily than
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larger ones. Both normal and reverse segregation are present depending on the masses
of both particles. Several issues are still open. For example, recent experimental results
[8] show that the presence of the reverse Brazil-nut effect is suppressed if the filling
height is too large, and work is in progress to check how our model depends on it.
Moreover, our system receives energy in a way analogous to a thermal reservoir, while
in vibrated systems energy is usually injected from below and dissipates as the flow
of energy goes up. Thus, it seems that the vertical dissipation (temperature gradient)
is not a necessary ingredient for the segregation. To conclude, much theoretical and
experimental efforts are still necessary to elucidate the general conditions under which
segregation occurs in granular systems.
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