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Abstract

We present an analytical and numerical study of a nonlinear di$usion model which describes
density relaxation of densely packed particles under gravity and weak random (thermal) vibra-
tion, and compare the results with Monte Carlo simulations of a lattice gas under gravity. The
dynamical equation can be thought of as a local density functional theory for a class of lat-
tice gases used to model slow relaxation of glassy and granular materials. The theory predicts
a jamming transition line between a low-density 6uid phase and a high-density glassy regime,
characterized by diverging relaxation time and logarithmic or power-law compaction according
to the speci7c form of the di$usion coe8cient. In particular, we show that the model exhibits
history-dependent properties, such as quasi-reversible–irreversible cycle and memory e$ects—as
observed in recent experiments, and dynamical heterogeneities.
c© 2003 Elsevier Science B.V. All rights reserved.
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1. Introduction

The dynamics of granular matter has received considerable attention in the past
few years as it poses interesting problems from a theoretical point of view, besides its
relevance to industrial applications [1–4]. At high density, excluded-volume interactions
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play a crucial role in the formation of disordered, amorphous granular packings. In fact,
the analogy between slowly compacting granular materials and other disordered systems
like glasses has been early recognized [5,6], and has motivated several experiments in
which slow compaction and history dependence have been investigated in great detail
[7–12].
Granular and glassy systems share the important feature of having an exponentially

large number (in the system size) of di$erent mechanically stable packings. Microscop-
ically, this property can be thought of as generated by geometric frustration or kinetic
constraints on the possible moves or positions of particles. This in turn leads, at high
packing density, to a vanishing particle mobility which is the distinctive macroscopic
manifestation of slow relaxation and jamming transition (dynamical arrest).
In general, two ingredients are responsible for the unusual behavior of a granular

material. First, collisions between the particles are inelastic, and energy has to be con-
stantly pumped into the system. Second, at high packing density, the excluded volume,
and the associated cage e$ect, is very similar to the one observed in structural glasses
[13]. A number of schematic lattice-gas models [14–20] has shown indeed that the
main features of irreversible compaction do not depend, to a certain extent, on the
dissipation mechanism (which is often assumed to be, for simplicity, of thermal na-
ture), but can be understood solely in terms of steric hindrance. In this paper, we shall
be concerned precisely with this quasi-static 6ow regime, which in the case of dense
systems is the relevant one. Even with this simplifying assumption the detailed cor-
respondence with mean-7eld, mode-coupling approaches of glassy dynamics remains
however problematic because the presence of gravity leads to a non-trivial dependence
on the spatial variable for the basic observables. Other complications may further arise
from the presence of boundary conditions. At the present stage, coarse-grained ap-
proaches based on real-space di$usion equations can, therefore, be very useful in the
theoretical interpretation of experimental results and to disentangle the glassy features
which are inherent to the compaction dynamics from the ones which depend on the
speci7c energy injection/dissipation mechanism.
Some typical questions in slow granular dynamics that one is concerned with are

• origin of the logarithmic compaction law;
• scaling behavior of the aging dynamics;
• reversible–irreversible cycle;
• memory phenomena;
• and dynamical heterogeneities.

We have recently addressed some of these issues by studying the dynamics of a
kinetic free-volume model for granular media [16], and proposing an analytical ap-
proach based on a dynamical local density functional theory [21]. We have precisely
characterized the way compaction and aging depend on the particle mobility of a homo-
geneous system. Speci7cally, there are two relaxation regimes, fast and slow, separated
by a dynamic jamming transition. The compaction law in the slow dynamic regime
depends upon the particle mobility: we 7nd that logarithmic compaction and simple
aging are intimately related to a Vogel–Fulcher-type law, while power-law compaction
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and superaging behavior occur in the presence of a power-law vanishing mobility.
The objective of this paper is to extend our previous work [16,21], and in particular
to address other history dependent phenomena, such as reversible–irreversible cycles
[8–10], memory phenomena [22–25] and dynamical heterogeneities [26,27], which
have recently attracted some attention.
In the next section we shall introduce the nonlinear di$usion model and the re-

lated lattice-gas which is thought to be its microscopic realization. The stationary den-
sity pro7les, along with the jamming transition will be presented in Section 3. In
Section 4 the possible scenarios for the time evolution of packing density are de-
scribed. Reversible–irreversible cycles and memory phenomena will be discussed in
Section 5, while the scaling behavior of the aging dynamics is addressed in Section 6.
Section 7 discusses the dynamical heterogeneities in presence of gravity and, 7nally,
in Section 8 the conclusions will be presented.

2. Models

2.1. Nonlinear di7usion equation

We assume that the dynamical evolution of the local particle density �(z; t) is gov-
erned by the continuity equation

9�(z; t)
9t +

9J (z; t)
9z = 0

with the particle current J (z; t) given by the Fick’s law,

J (z; t) =−�(�)9�(z; t)9z ;

where �(�) is the Onsager mobility and �(z; t)=�F=�� is the local chemical potential.
The only interaction between the grains we consider is the hard core repulsion, for
which the exact lattice Helmholtz free energy functional is [28]

�F[�(z; t)] =
∫ H

0
dz[
z�− S(�)] ; (1)

where the entropy S(�) is given by

S(�) =−� ln �− (1− �)ln(1− �) : (2)

For highly packed hard-sphere systems, theoretical and experimental studies suggest
that the di$usion coe8cient vanishes as a power law [29–31]. Hence we will assume
that the mobility �(�) vanishes as

�(�) = �0�
(
1− �

�c

)�
;

and remains zero for �¿�c. Below, we will also discuss another possible functional
form for the mobility which is commonly encountered in systems of particles with
anisotropic shape (e.g., rods). Note that the above functional form of mobility has an
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implicit dependence on the height, because the density pro7le is typically inhomoge-
neous (�= �(z)) due to the driving force and boundary conditions. The use of a local
density approximation for the mobility will be justi7ed by the comparison of theoret-
ical predictions with Monte Carlo simulations of a lattice gas model which exhibits a
vanishing di$usion coe8cient at a threshold density �c [32]. Substituting �(�) into the
continuity equation we are led to

9�
9t =

9
9z

{(
1− �

�c

)� [ 1
1− �

9�
9z + 
�

]}
; (3)

where the time is now measured in units of 1=�0kBT . This equation has to be completed
by specifying the boundary conditions. We will discuss two simple cases corresponding
to open and closed systems. In both situations, one boundary condition requires the
vanishing of the current at the bottom layer z=0, J (0; t)=0 for any time t. If the top
layer z=H is in contact with a particle reservoir at density �R (open system), the other
boundary condition reads �(H; t) = �R for all t; while for a closed system in which
the total number of particles is kept constant, the second boundary condition leads to
a vanishing current also at z=H , J (H; t) = 0. Although no closed analytical solutions
of Eq. (3) is found, it is possible to characterize its asymptotic long time regime by
an explicit calculation of density relaxation and two-time mean-square displacement.

2.2. Microscopic lattice gas

The simplest microscopic realization of the nonlinear di$usion equation one can
imagine is provided by a lattice gas having a vanishing di$usion coe8cient above a
certain threshold density (see Ref. [33] and references therein). A paradigmatic example
is the kinetically constrained lattice gas model devised by Kob and Andersen [32].
The model was originally introduced with the purpose to test the predictions of the
mode-coupling theory for supercooled liquids [29]. The system consists of N particles
on a lattice with at most one particle per site and no other static interactions between
the particles, that is the Hamiltonian is H=0. The microscopic dynamic is as follows:
at each time step a particle and one of its neighboring sites are chosen at random;
the particle can move to the new site if this site is empty and if the particle has
less than � nearest neighbors occupied before and after the move. This kinetic rule
is time-reversible and the detailed balance is satis7ed. At high densities, the dynamics
slows down because the reduced free-volume makes it harder for a particle to satisfy
the dynamic constraints. There exists a critical density �c above which the particles
are so interlocked that no macroscopic structural rearrangement is possible and the
mobility falls to zero as a power law, D(�)∼ (�c − �)�. For the simple cubic lattice
[32], �c � 0:88, while for the body centered cubic (BCC) lattice one gets �c � 0:84, see
Fig. 1. The critical density �c is therefore non-universal, depending both on the lattice
structure and the particular choice of the dynamical constraint parameter �. In both
cases, however, the value of the exponent is consistent with � � 3:1. The universality
of the exponent � was recently suggested by Imparato and [34], Peliti who studied the
di$usion on a face centered cubic lattice for several choices of �.
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Since much of dynamical properties of both structural glasses and dense granular
materials are dictated by steric constraints, we have generalized [16] the Kob–Andersen
model in a gravitational 7eld. The Hamiltonian now is

�H= 

∑
i

zini ; (4)

where ni=0; 1 is the occupation variable of the ith site whose height is zi; 
=mg=kBT
is the inverse gravitational length and g is the constant gravitational 7eld acting in
the −z direction. Since we are interested in the slow compaction regime, the energy
dissipation due to inelastic collisions is ignored. The thermal energy of the grains
is negligible and T is neither the physical temperature nor the “granular temperature”
usually associated with the average kinetic energy, but rather a function of the externally
imposed vibration intensity. In other words, we assume that the random di$usive motion
of “grains” produced by the mechanical vibrations of the box can be modeled as
a thermal bath of temperature T . 1 The particles satisfying the kinetic constraints can
move according to the Metropolis rule with probability min[1; x−Qh], where Qh=±1 is
the vertical displacement for the attempted elementary move and x=exp(−
) represents
the “vibration amplitude”. Notice that instead of a tapping dynamics (which is more
suitable in an experimental setup), in this case the system follows a continuous vibration
dynamics. Particles are con7ned in a box closed at the bottom and with periodic
boundary condition in the horizontal direction. At the top, the box can be either closed
or in contact with a particle reservoir. We set the constraint threshold at � = 5. The
Markov process generated by the kinetic rules is irreducible on the full con7guration
space [16], the static properties of the model are those of a lattice-gas of non-interacting
particles in a gravitational 7eld, and these can be easily computed. For example, the
mean occupation of each level is

�(z) =
1

1 + e
z+�
; (5)

where the Lagrange multiplier � is determined by the global density or the chemical
potential, according to the statistical ensemble.

3. Jamming transition and density pro�les

3.1. Open system

The stationary state of Eq. (3) is obtained when 9�=9t = 0, which implies that
J (z;∞)= 0 for all z. Imposing the stationarity condition, depending on the value of 
,
two very distinct types of stationary pro7les are found. For high values of 
 the system
is in equilibrium and the pro7le is given by Eq. (5). As the vibration is lowered, a
homogeneous region of constant density �(z;∞) ≡ �c develops below the height z0.

1 The e$ect of dissipation can be studied by allowing for violation of detailed balance, as recently done
for example in Ref. [20].
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Fig. 1. The di$usion coe8cient of a BCC lattice (L = 32) as a function of the density. The full line is a
power-law 7t with �c � 0:84 and � = 3:1.

The stationary solution of Eq. (3) becomes,

�∞(z) =



�c; z6 z0 ;

1
1 + exp(
z + �)

; z¿ z0 :
(6)

The values of z0 and � are obtained from the boundary conditions. If the top of the
box is connected to a particle reservoir then �∞(H) = �R. This and the continuity of
the density pro7le at z = z0 lead to,

z0 = H +
1


ln
�R(1− �c)
�c(1− �R)

; (7)

�= ln
1− �R
�R

− 
H : (8)

The jamming transition corresponds to the locus in the parameter space (
; �R), at
which the z = 0 layer attains the critical density so that �(0;∞) = �c. This happens
when


c(�R) =
1
H

ln
�c(1− �R)
�R(1− �c)

: (9)

When 
¿
c(�R) the density at the bottom of the box is close to the critical and dy-
namics becomes sluggish. On the other hand, above the critical temperature, 
6 
c(�R),
all the layers have densities smaller than �c and the system easily attains equilibrium.
The critical line Equation (9) is plotted, as a function of �R, in Fig. 2. Notice that
for the undriven case (
 = 0) the transition only occurs if �R = �c. It is important to
stress that for 
¿
c(�R) the stationary pro7les Equation (6) are not equivalent to the
equilibrium ones since they do not minimize the Helmholtz free-energy functional
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Fig. 2. Jamming transition line 
c (multiplied by H) as a function of �R, from Eq. (9). This line separates
regions of slow (glassy) and fast (6uid) relaxation.
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Fig. 3. Stationary pro7les above and below the critical line for an open system in contact with a particle
reservoir at density �R = 0:1. The symbols are the densities obtained from the simulation on a BCC lattice
and the solid lines are the theoretical results. For 
 = 0:072¿
c, squares, the longest time shown is 106

MCS while for 
 = 0:041¡
c, circles, the time is 105 MCS. Notice that the simulation pro7le for 
¿ 
c
is not yet stationary, although the upper part is much closer to the asymptotic solution.

Equation (1). This is so because the system is not able to achieve, dynamically, den-
sities higher than �c. In the zero gravity case 
 = 0, the stationary pro7le is 6at,
�∞(z) = �R.
In Fig. 3 we compare the stationary pro7les with the ones found in Monte Carlo

simulation of the gravity-driven KA model on the BCC lattice [16,21] at large times.
A very good agreement is obtained with no adjustable parameters. As discussed in
the next section, the simulations were carried on connecting the topmost layer of the
system to a reservoir of particles.
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Fig. 4. Jamming transition line, 
c (multiplied by H), as a function of the average density R�. The divergence
near the origin scales as R�−1, di$erent from the logarithmic divergence found for the system in contact with
a reservoir, Eq. (9). Notice that in this case the density parameter is the average total density, R�, while in
the open case it is the reservoir density �R.

3.2. Closed system

For a closed system of volume V (the height H times the basis area) and a 7xed
number of particles N = R�V one proceeds in a way analogous to the previous section.
We 7nd that z0 and � satisfy the coupled equations

z0 =
1


ln

1− �c
�c

− �


; (10)

�= ln
e−
[ R�H+z0(1−�c)] − e−
H

1− e
(�cz0−H R�) ; (11)

while the locus of the jamming transitions satis7es the implicit equation


c =− 1
R�H

ln(1− �c + �ce−
cH ) : (12)

This line is depicted in Fig. 4 as a function of the average density R�. An example of
a stationary pro7le for a 7xed number of particles is shown in Fig. 5. Simulations on
bidimensional hard spheres also present a pro7le compatible with an almost 6at part
plus an interface [35].
We now turn to the behavior of the density pro7le found in the Monte Carlo simu-

lation. We 7rst let the system evolve at x=0 until a mechanically stable con7guration
in which no particle can move down, is achieved. This state is metastable because
at x = 0, there is a single ground state with equilibrium bulk packing density � = 1.
Experimentally, it has been veri7ed that the initial density depends on the preparation
procedure [36], in particular, on the box 7lling rate, that is, the number of particles
which fall per unit of time. If particles are poured one at a time, that is, they are
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Fig. 5. Examples of density pro7les above and below the critical line for a system closed after its density
achieved R�=0:5. The tapping amplitude in the glassy phase is 
=0:4, while in the 6uid phase it is 
=0:03;
system height H = 80. Notice that for 
¿ 
c the simulation pro7le at 7nite times (106 MCS in this case)
is not yet stationary, although the upper part is indistinguishable from the asymptotic solution.

individually handled, then the falling trajectories are independent. By doing so in the
gravity-driven KA model, the kinetic constraints would always be satis7ed since the
sites above the falling particle would be empty, and the system would achieve a fully
compacted state. By pouring more than one particle at a time, their trajectories may
interfere, preventing the system from achieving the highest possible density. This col-
lective handling of particles may be implemented in several ways. For example, in
Ref. [16], in order to avoid this highly compacted initial state, all the particles were
poured together, by placing them in the upper half of the box and letting them fall
randomly under the action of the gravitational 7eld, until a state where no particles can
fall further is achieved. In this case, the initial average packing density is �rlp � 0:707,
roughly corresponding to a random loose packed state. Once the system is prepared,
the vibration at a 7xed amplitude x is turned on. Another possibility pointed out in
the previous section is to use a reservoir that may be left open forever or be closed
after a predetermined number of particles has entered the box. This is also a collective
way of handling the particles, with the advantage that the initial 6ux of particles can
be tuned, being intermediate between all particles falling at once and one at a time.
Indeed, as the system is less constrained than when all the particles are falling at once,
it is able to achieve a larger bulk density and the pro7le is closer to the stationary
one (see Figs. 3 and 5). Moreover, for the same reason, the structured region at the
bottom, discussed in Ref. [16], is either absent or signi7cantly less pronounced.
Near the top of the granular pile, a dense interfacial layer forms as a result of an

increased mobility due to the low density of particles in the top most layers. This dense
layer becomes more compact with time hindering the underneath particles motion.
However, due to the (horizontal) roughness of the interface the e$ect appears less
pronounced than in the bottom region. On the other hand, if the reservoir is kept open
for all times, there is no such sudden decrease in density, and even particles at the
interface are still quite constrained and no dense layer is observed in the pro7le shown
in the previous section (Fig. 3).
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4. Compaction dynamics

4.1. Low-density phase

Above the jamming transition, 
¡
c(�R), the approach to equilibrium is exponen-
tially fast, �(z; t) � �∞(z) + g(z)e−t=!, as can be checked by numerically solving
Eq. (3).
When the system is in permanent contact with a reservoir, the characteristic time

satis7es an exact scaling equation [21]

!−1 =
"2

4H 2 F(
H ; �R) ; (13)

where F(y; �R) is a scaling function. In the special case of zero gravity [37], 
 =
0, particles di$use freely from the reservoir until a uniform density, �∞(z) = �R,
is established. The characteristic time of approach to equilibrium can be calculated
explicitly [21] by linearizing Eq. (3). We 7nd that the relaxation time for 
= 0 is

!−1 =
"2

4H 2(1− �R)

(
1− �R

�c

)�
(14)

or equivalently F(0; �R)=(1−�R=�c)�=(1−�R). Eq. (14) is in perfect agreement with
the numerical integration of Eq. (3) [21]. As expected, the relaxation time diverges as
�R → �c. The exponent characterizing this divergence is �.
In the presence of a gravitational 7eld we 7nd, by numerical integration of

Eq. (3), that as 
 → 
c(�R), the density of the 7rst layer approaches �c, �∞(0) → �c,
and F ∼ (
c − 
)�−2. Thus, the relaxation time diverges with exponent � − 2 (see
Fig. 6) implying that the dynamics is faster than in the zero gravity case. Comparing
with Eq. (14), we see that the jamming transitions in the homogeneous and inhomo-
geneous systems, belong to distinct dynamic universality classes.
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Fig. 6. Inverse relaxation time, !−1, for 
 = 0:1 and H = 10 with �c = 0:88 and � = 3:1, corresponding
to the Kob–Andersen model on a simple cubic lattice. The points are the result of numerical integration of
Eq. (3). Inset shows the same data on the log scale. The characteristic time diverges with exponent �− 2
as the jamming transition is approached.
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4.2. High-density phase

Below the jamming transition, 
¿
c(�R), the density of the bottom layers, z¡
z0(�R), is close to the critical, �(z; t) � �c, and the dynamics slows down. To the lowest
order in $(z; t) ≡ 1− �(z; t)=�c, Eq. (3) simpli7es to,

9$(z; t)
9t =−
 9$

�

9z : (15)

To solve this nonlinear equation we propose a scaling ansatz $(z; t) = $(z=t%). Substi-
tuting into Eq. (15), we see that this form is a solution if $(z=t%) is a power law with
%= 1:

$(z; t) =
[
z

�t

]1=(�−1)

: (16)

Notice, that in the absence of gravity, 
 = 0, density relaxation is slower and charac-
terized by a di$erent dynamical exponent, $(z; t) ∼ t−1=� [37].
Although in experiments, one is usually interested in the bulk properties, Eq. (3) can

also shed some light on how the upper layers z¿ z0 compact. Using the asymptotic
solution, Eq. (16), in the de7nition of J (z; t) we 7nd that for large times the particle
current passing from the upper layers into the bulk through z = z0 is

J (z0; t) = 
�
(
z0

�t

)�=(�−1)

: (17)

Since the density of the upper layers is smaller than critical and since we are only
interested in the scaling behavior, it is su8cient to study the linearized version of
Eq. (3):

9�
9t =

92�
9z2 + 


9�
9z (18)

with boundary condition: �(H; t) = �R, and J (0; t) = J (z0; t). The temporal Laplace
transform of this linear equation can be easily solved yielding for the density relaxation
of upper layers the following expression:

�(z;∞)− �(z; t) � J (z0; t)



[e
(H−z) − 1] ∼ t
− �

(�−1) : (19)

Remarkably, the time relaxation above and below z0 are both slow and follow a power
law with di$erent exponent. As expected, the dynamics in the upper layers is faster
than in the lower ones, and its contribution to the relaxation function at long times
becomes negligible since � is usually larger than one.
The asymptotic solution, Eq. (16), is in partial agreement with the lattice-gas Monte

Carlo simulation data, Fig. 7. The same numerical data were previously 7tted with a
four parameter logarithm law

�(t) = �∞ − Q�∞
1 + B ln(1 + t=!)

; (20)
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Fig. 7. Power-law 7t (normalized to unity), for large times, of compaction data. The 7t parameters are all
dependent on x, although a unique exponent for the large values of x is also consistent. The full straight
line t−1=(�−1) represents the long-time prediction of the nonlinear di$usion equation.

where �∞ is the asymptotic packing density and B, $�∞ and ! are adjustable pa-
rameters which also depend on x. The above function, 7rst used in Ref. [7], gives
a reasonable 7t in the whole time window accessible to experiments; however, one
can check that the long-time behavior is also compatible with a power law relax-
ation. Interestingly enough, something similar happens here, con7rming that a limited
time-window may not allow to distinguish among several regimes of slow relaxation
[38]. One can also notice, from Fig. 7 that for high values of x, all curves are com-
patible with the same exponent, while for small values, the exponents seems to be
di$erent. This may be however another artifact of the very slow relaxation for small
x, which prevents the system from attaining the asymptotic regime.
Further, we 7nd that independently of the speci7c functional form of the 7t, log-

arithmic or power law, the asymptotic packing density �∞25% is quite the same for
the simulation data (Fig. 8). It turns out to be a non-monotonic function of vibration
x and displays an optimal value for the asymptotic compaction, as can be seen in
Fig. 8. This maximum is achieved for rather high vibration because an initial decom-
paction increases the free volume available to particles making it easier to satisfy the
kinetic constraints and their local arrangements. It is clear that the speci7c location
of the maximum depends on the portion chosen to measure the packing density (H=4
in this case) however it does not a$ect the form of the plot. On the other hand, the
asymptotic bulk density obtained from the di$usion equation is a monotonous decreas-
ing function of the vibration. The discrepancy is probably due to the di8culty that
the system has in attaining the correct asymptotic state for the 7nite available time at
constant vibration.



J.J. Arenzon et al. / Physica A 325 (2003) 371–395 383

 0.65

 0.75

 0.85

0  0.25  0.5  0.75 1

ρ 25
%

x

∞
0.70

0.80

0.90 0.95 1.0

Fig. 8. Square and circle symbols are the asymptotic packing densities obtained within the Monte Carlo
simulation with 7xed number of particles. The two refer to the extrapolations using a power-law 7t and the
logarithmic form, Eq. (20). The equilibrium density is the thick solid line while the thin line is the bulk
density evaluated from the asymptotic limit of Eqs. (6), (10) and (11). The dynamical jamming transition
is located where all curves meet, near xc � 0:979. Notice that, from the theory, up to the region near
the maximum we have z0¿H=4 and the packing density is �c, while above it the point z0 penetrates in
the de7ned bulk region and the density deviates from �c. Inset: region near the transition. Notice that the
simulation data agree well with the result from the di$usion equation, while below xc both start to deviate
from the equilibrium curve.

Finally, in order to stress the counterintuitive nature of compaction dynamics it is
worth to point out its relationship with the so-called negative resistance phenomena.
These are usually observed in a non-equilibrium stationary state, where an increasing
driving force leads to a decreasing system response (usually a particle current). During
irreversible compaction, which is non-stationary, something similar happens: indeed,
when vibration (the driving force) increases the a priori probability that a particle
moves upward is larger; it actually turns out that the system compacts, i.e., the average
direction of particle 6ow (the response) is preferentially downward and non-monotonic.
This is illustrated in Fig. 9 where we plot the local current J (z; t) at di$erent times t,
as a function of the vibration strength x. One observes that at any given time, there is
an optimum value of x at which the current get its maximum. At increasing time the
maximum moves towards higher values of x. Qualitatively similar results are obtained
for di$erent z.

4.3. Logarithmic compaction and Vogel–Fulcher-type law

Up to now our discussion has been motivated by dynamics which are characterized
by a power-law vanishing mobility. However, there are various systems for which the
mobility vanishes according to the Vogel–Fulcher-type law,

�(�) = �0� exp
(

a�c
�− �c

)
: (21)

Boutreux and de Gennes [39] have argued that logarithmic compaction is intimately
related to this law which in turns derive from a Poisson distribution of voids in the
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Fig. 9. Local current J (z; t) for several times t and z = H=2, as a function of the vibration strength x.

systems. A similar conclusion can also be drawn from our approach. In this case the
time evolution of the local particle density is governed by the equation

9�
9t =

9
9z

{
exp

(
a�c

�− �c

)[
1

1− �
9�
9z + 
�

]}
: (22)

Again, proceeding as in the previous section, to the lowest order in $(z; t) ≡ 1 −
�(z; t)=�c, one 7nds that for the bottom layers (z¡ z0):

9$(z; t)
9t =−
 99z exp

[
− a
$(z; t)

]
: (23)

As before we attempt a scaling ansatz. For very large times we 7nd

$(z; t) =
a

ln(t=z)
; (24)

which is in agreement with the full numerical solution of Eq. (3). This relaxation is
similar to the logarithmic compaction law, Eq. (20) used to 7t experimental data by
Chicago group [7].
For layers above z0, the time evolution is still slow but follows a power law. Pro-

ceeding in the same way used to obtain Eq. (19) we 7nd

�(z;∞)− �(z; t) ∼ t−1 : (25)

Although the bulk dynamics is logarithmically slow, the compaction of upper layers is
governed by a power law with exponent −1.

5. History dependence

It is well known that dynamical e$ects in slow relaxing systems depend sensitively on
the history of the sample after a quench in the high-density (or low-temperature) phase.
These phenomena have been extensively studied by means of several experimental
protocols.
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In the previous section, we focused on the simplest situation in which the sample is
prepared in a random loose packed state and then the vibration is turned on and kept
7xed to a given value of amplitude during the measurement.
In order to test the system response, here we consider the e$ects of cyclic changes

in the vibration amplitude, either continuously or suddenly, to a di$erent value which
corresponds to a state with a lower or higher asymptotic packing density.

5.1. ‘Reversible’–irreversible cycles

Experiments on glass beads [8,9] have shown that under a cyclic variation of the
vibration a system prepared in a random loose packed state 7rst presents a branch
during which the density increases as a function of the vibration (until high vibrations
are attained and decompaction starts). This branch is irreversible, meaning that when
the vibration is decreased at the same rate, the system does not trace back the earlier
evolution, but rather its density keeps growing as the vibration decreases. Experimen-
tally, this second branch appears to be reversible, that is, the system seems to reach a
stationary state in which any further cyclic variation of the vibration keeps the system
always on the second branch. Along this branch the packing density is a decreas-
ing function of the vibration amplitude (contrary to what happens in the irreversible
compaction regime).
Applying the same protocol to both the di$usion equation and the lattice-gas we

7nd that the reversible branch only appears for extremely slow driving rates. Similar
results have been observed experimentally during the compaction of anisotropic granular
materials like rods [10] and shearing induced compaction [23]. The system presents
a succession of irreversible branches which get closer and closer as the number of
cycles increases (see Fig. 10 and the corresponding inset). The slower the vibration
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Fig. 10. Bulk density as a function of time for a cycling variation of the driving rate within the nonlinear
di$usion equation (Eq. (3)). Here the waiting time is 500 steps and the reservoir is again at �R = 0:1. Each
branch evolves from 5 × 103 steps from the minimum x value of 0.5 to the maximum one of 0:95. Inset:
the same experiment with the gravity driven KA lattice-gas model. The parameters are the same as before,
only that the waiting time is 5000 MCS and each branch has a total duration of 2 × 104 MCS. In both
cases, the distance between the branches decreases as the number of cycles increases.
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Fig. 11. The same as the inset of Fig. 10 only that x is reversed at di$erent maximum values. Notice that
in this case, di$erent densities are attained.

change rate is, the smaller is the separation between the branches. In this way, for
real systems the distance between the irreversible branches can become of the order
of the measurement error, appearing as if there was just one reversible branch. It must
be noticed that after cycling for a certain number of times, the density hardly changes
from the lowest to the highest values of x, presenting a rather 6at behavior. This can be
explained using the asymptotic packing density (Fig. 8): unless the vibration is too high,
the asymptotic bulk pro7le is 6at. Even if the system enters in the high-x region, the
6atness of the density will depend on the vibration change rate: it will only bend down
if the rate is slow enough so that the system can approach the equilibrium state. Finally,
we mention that for some choices of the parameters small hysteresis [40] loops also
appear in the region of high vibration; the area of the loops is a function of the vibration
rate. We also expect that by using the Vogel–Fulcher-type mobility the cycles present
a very similar behavior. Moreover, for high vibrations, dissipation e$ects may play
a role. It would be interesting to experimentally study particles with di$erent friction
properties to check to what extent the cycle properties depend on these. In Fig. 11 we
illustrate the e$ect of changing the turning point, that is, the maximum attained value
of x before starting to decrease it. We notice that the density follows almost parallel
paths, only that the maximum attained density is bigger the higher is the turning point.

5.2. ‘Memory’ e7ects

Another possible experiment devised to explore history dependence consists of mea-
suring the short-time response of an aged system to an abrupt perturbation in x [22,23].
After evolving the system for a certain tw at a 7xed x, the vibration amplitude is shifted
by Qx until the time tw +Qt and then returned to x. As an example, in Fig. 12, we
show the curves for perturbations applied to systems with di$erent age, tw = 103 and
tw=104. In both cases, Qx¡ 0, and the compaction rate increases while one would ex-
pect, from the long-term behavior of the system, a slower relaxation for a smaller-value
of x. For the older system, tw = 104, the 7rst regime is hardly visible because the
system is sti$er. These results, are consistent with earlier experimental [22] and theo-
retical [24,25,38] works. For Qx¿ 0 (not shown), although one would expect a faster
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Fig. 12. Short-term memory experiment performed with the gravity driven KA model. The thick line shows
the unperturbed evolution. The system is perturbed at tw = 103 and 104 after evolving with x = 0:6 (solid
normal lines). In the interval tw ¡ t ¡ tw+Qt, with Qt=104, the vibration changes to 0.3. Notice that in the
case where the system is perturbed earlier, the system 7rst increases its density (the short-term memory e$ect
as described in the text), resuming its expected behavior after some time. In the case of a later perturbation,
this 7rst regime is not noticeable.

compaction, for short times soon after the perturbation the system decompacts. The
same behavior is also found for the di$usion equation when the system is in contact
with the particle reservoir. For large times after turning the perturbation o$, the system
resumes its normal behavior. Thus, because of the transient nature of the response, it
appears as a short-term memory. Moreover, after the initial anomalous behavior, the
perturbed and non-perturbed curve crosses and the system start to evolve with the rate
expected from long-term behavior.
Besides short-term memory e$ects, long-term memory is also present. To see this,

we repeat the above experiments with the di$erence that the perturbation is applied at
a much larger tw (105 in this case). Moreover, the perturbation is kept on also for a
longer period. After being turned o$, the system vibration is returned to its previous
values. As can be seen in Fig. 13 the system evolves much less during the time
interval Qt when it is perturbed: the hcm roughly follows a plateau. This is expected
since the relaxation rate decreases for smaller values of x. Moreover, when turning
the perturbation o$, the system returns to a point very close to the one where it was
before being perturbed. This is more clear in the inset of the same 7gure, where the
perturbed data for t ¿ tw +Qt are shifted by Qt and seems, as a 7rst approximation,
to collapse on the unperturbed curve, showing that the system keeps, to some extent,
memory of its state before the perturbation even if being perturbed for a long time.
As is common is systems in a non-stationary state, the response of the system to a

perturbation in the vibration clearly depends on its age. The larger is tw, the greater
is the compaction achieved by the bulk and less responsive the system becomes. For
small tw, the bulk is still very sensitive to the perturbations, the amount of free volume
is considerable and as soon as the vibration is lowered, the particles get closer and
the density increases very fast, even faster than one would expect from the knowledge
of the asymptotic behavior. By increasing, instead of decreasing, the vibration, the
opposite behavior is observed. Thus, short-term memory is related to perturbations at
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Fig. 13. Long-term memory experiment. The evolution of the height of the center of mass (or, equivalently,
the potential energy) is plotted as a function of time. Notice that if the system has evolved enough time
(tw = 105 in this case) the further evolution after the perturbation is quite small and the system returns to
its previous state when the perturbation is turned o$. In the inset, the perturbed data for t ¿ tw are shifted,
t → t − 105 showing that they collapses on the unperturbed data. Averages are over 300 samples.

early times. However, as tw increases, the amount of free volume in the bulk decreases
and most of the instantaneous response, when perturbed, comes from the interface,
that has a fast dynamics. After this strong response due to the interface (that is only
seem in global measures like the height of the center of mass), the system continues
at a much smaller pace, corresponding to the expected evolution at the new vibration
value. Thus, in the interval Qt while the perturbation is on, the amount of change is
due to the bulk evolution and is smaller the larger is tw (for example, for the waiting
times that we probed, from 103 until 105, the bulk always evolved). As a conclusion,
“long-term memory” e$ects can only be seen as an approximation, with a very simple
explanation as also pointed out in [25].
As remarked in Refs. [41,42] (in the context of glasses), a rate equation for a single

macroscopic variable (e.g., the free volume) would not be able to account for the com-
plexities of the memory e$ects. Nevertheless, it must be emphasized that the nonlinear
di$usion equation studied here is explicitly dependent on the spatial dimension, and is
this heterogeneous pro7le that encodes the additional information responsible for the
e$ects discussed here. However, more complex memory e$ects are observed in systems
without gravity like glasses and spin-glasses, and is unlikely that this equation would
be able to account for them, since probably they involve e$ects due to the interaction.
In order to capture the complexity of these e$ects, this equation would have to be
properly generalized.

6. Physical aging under gravity

We now turn to the discussion of physical aging phenomena under gravity as they
appear in the two-time scaling behavior after a sudden quench into the high packing
density phase.
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6.1. Mean-square displacement

In our approach the aging e$ects are best studied by considering the two-times
mean-square displacement of particles, B(t; tw), which for the 3D lattice-gas is de7ned
as

B(t; tw) =
1
3N

3∑
a=1

N∑
k=1

〈[rak (t + tw)− rak (tw)]
2〉 ; (26)

where rak (t) are the coordinates (a=1; 2; 3) of the particles k at times t. In the continuous
1D di$usion model, if t is su8ciently larger than tw, the mean-square displacement at
height z can be written as

Bz(t; tw) =
∫ t

tw
ds�[�(z; s)] : (27)

It is worth to recall that in zero gravity one 7nds a simple aging [37]. For a power-law
di$usion and for the lower layers z¡ z0(�R) we 7nd, to leading order in t and tw, a
two-time scaling of the form

Bz(t; tw) ∼ t1−�
w − t1−� ; (28)

with an exponent �=�=(�−1). Since, usually �¿ 1, this corresponds to a super-aging
regime, �¿ 1. This means that the e$ective structural relaxation time grows as t�w, what
is faster than the age of the system, tw. It also means that there is a microscopic time
scale that starts to become relevant, di$erently from what happens with simple aging.
For the upper layers, z¿ z0(�R) one obtains the same two-time scaling behavior but
this time the exponent is �=�2=(�− 1). However, for closed systems at not so large
vibrations, the contribution from the layers above z0 is small since most of the particles
are at z¡ z0.
A similar super-aging behavior has been observed in the simulation of the gravity-

driven KA model [43] where the agreement is rather good if the vibration is not
too low. For example, we show in Fig. 14 the mean square displacement for the
case x = 0:4 along with Fig. 15 where these curves were collapsed onto a master
curve following the above scaling. The super-aging exponent obtained from the data
collapse is � = 1:48 which is in very good agreement with the theoretical prediction
� = �=(� − 1) � 1:476. For smaller vibrations, the exponents become smaller since
the time accessible to the measurement is probably not enough to reach the asymptotic
regime (where the approximation is valid), thus di$ering from the theoretical value.
For a Vogel–Fulcher-type di$usion instead we 7nd, to the leading order in t and tw,

and for z¡ z0(�R):

Bz(t; tw) ∼ log
(
t
tw

)
; (29)

that is a simple aging scenario, whereas for the upper layers, z¿ z0(�R), one obtains
(to the leading order in t and tw) that the two-time scaling does not depend on t=tw
but rather

Bz(t; tw) ∼ e−a�ctw − e−a�ct : (30)
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The data collapse is obtained for � = 1:48.

6.2. Triangle relation

It is interesting to observe the di$erent behavior of Eqs. (29) and (28) at 7nite
waiting times tw. In the case of simple aging, limt→∞ B(t; tw) = ∞, i.e., a weak
ergodicity scenario [44]; while for super-aging, a 7nite limit is obtained (which,
however, vanishes as tw → ∞). The manner in which time-translation invariance is
violated is, however, similar. Indeed, if we consider the “triangle relation”, B(t1; t3) =
f[B(t1; t2); B(t2; t3)], where the times t1; t2, and t3 are in increasing order, it is straight-
forward to check that f(x; y)=x+y in both Vogel–Fulcher-type and power law cases,
implying that displacements over non-overlapping time intervals are statistically in-
dependent. This feature does not hold in the presence of activated aging for which
B(t; tw) ∼ log t=log tw [44]. In the gravity-driven KA model the triangle relation is not
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obeyed at short times but becomes asymptotically valid at longer times as it can be seen
in Fig. 16. 2

7. Dynamic heterogeneities

In purely kinetic models, the absence of an increasing static correlation length on
approaching the dynamic arrest poses the question of whether the increasing relax-
ation times can be related to a diverging dynamic correlation length. This has been
associated to the presence of dynamical heterogeneities in glasses (for a review see
Refs. [26,27,33] and references therein). If the glass/dense granular analogy holds true
then one would expect that the role played by dynamical heterogeneities in slow gran-
ular compaction should be similar to that observed in glassy dynamics. However, the
role played by these structures and the associated lengths, on the dynamics of gran-
ular and colloidal systems, is yet to be understood. Several measures for quantifying
the spatial heterogeneities have been introduced for kinetic models [33]. In particu-
lar, this issue was recently investigated in the KA model [45] without gravity using
a fourth-order correlation function. Here we extend the investigation to the non-zero
gravity case.
In Fig. 17 we plot the dynamical nonlinear response

-4(z; t) = N (〈q2(z; t)〉 − 〈q(z; t)〉2) ; (31)

where N is the number of involved sites in the computation, q(z; t) = C(z; t)=C(z; 0)
and

C(z; t) =
1
N

∑
i

ni(t)ni(0)− �(z; t)�(z; 0) ; (32)

2 We thank J. Kurchan for suggesting to check the triangle relation.
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Fig. 17. Dynamical response Eq. (31) as a function of time (in MCS) for di$erent vibrations: x=0:92 (7lled
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diverge as power laws with approximate exponents 3 and 0.6, respectively.

where i runs over all sites in the z, z − 1 and z + 1 layers. Consistently with the
theoretical expectation [33], the long time limit of -4 converges to unit, -4(z;∞)= 1. 3

We also veri7ed that this asymptotic behavior is valid in absence of gravity at variance
with the results of Ref. [45]. 4 Analogously to what happens in the KA model without
gravity and in other glassy systems, the peak is shifted to higher times and gets larger
as the density increases (the lower is the z, the greater is the density). In the inset of
Fig. 17 we show that both the position and height of the peak grow as power laws as
the density of the corresponding height approaches �c. Interestingly, -4 only depends
on the local density: for example, in Fig. 17 is shown that two curves corresponding
to di$erent z and x, but having almost the same density, are coincident within the
numerical accuracy.

8. Conclusions

We have investigated some aspects of slow granular dynamics inspired by kinetic
lattice-gas models [16,32]. The key ingredient of these models is a free-volume restric-
tion implemented by a purely kinetic constraint. No interaction between the particles
is assumed beyond the hard core exclusion. The thermodynamics of the model is
completely trivial and all its interesting features are purely dynamical. A macroscopic
transport equation was written and studied, allowing us to predict the speci7c loca-
tion of a jamming transition [11,46] and to analyze the behavior of the system in its
vicinity.

3 We thank P. Sollich for discussions on this point.
4 We thank R. Mulet for discussions on this point.
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As noted in the earlier work [21] and detailed here, the time evolution of particle
density in a gravity driven lattice gas is completely controlled by the mobility of the
corresponding gravitationless system. It was shown that for a power-law mobility, the
bulk density relaxes as a power law. On the other hand, when the particle di$usion
decreases exponentially accordingly to the Vogel–Fulcher-type law, a logarithmically
slow compaction is found. Due to the 7nite time window available, the data on granular
systems from the Monte Carlo simulation, as well as from experiments, is consistent
with both the power law and logarithmic relaxation. Furthermore, the issue of whether
the asymptotic density is a monotonic function of the vibration amplitude, can only be
solved by performing simulations over a much larger time window [38] or by applying
protocols where the vibration amplitude may vary. For the maximum time achieved
here with constant vibration, the asymptotic packing density seems to depend on the
vibration strength in a non trivial way, although from the di$usion equation we expect
that it should be a monotonic decreasing function of the vibration intensity.
The similarities between granular and glassy systems have been stressed many times

in recent years. Here we extended this discussion by showing that the behavior of dy-
namical heterogeneities is quite similar to the ones present in systems without gravity.
We showed that for di$erent vibrations the global non homogeneity induced by grav-
ity (that is, the density pro7le, di$erent for each vibration) does not a$ect the local
character of these quantities that only depends on the local density: the heterogeneities
present in a horizontal layer depends only on this layer density. This result could also
be relevant to the investigation of slow sedimentation of colloids.
Other signatures of glassy behavior are also present, like aging, reversible–irreversible

cycles and memory e$ects. In particular, short- and long-term memory e$ects are sim-
pler than their glassy counterpart and have already been described in terms of the
density pro7le properties. Irreversible branches are obtained when cycling the vibra-
tion amplitude, approaching a quasi-reversible branch when the rate is slow enough
or after cycling many times. We also remark the analogy between short-term memory
e$ects and the cycling experiments. In the decreasing-x part of the cycles, the density
increases as for smaller x. This is at variance with what one would expect from the
long-time behavior of the asymptotic packing density, exactly in the same way as the
system behaves in short-term memory experiments. The di$erence is that in one case
the change in vibration is discontinuous while in the other, it is done at a small rate.
The analytical approach presented here has some limitations. Among the features

seen in the simulation, which are not properly described by the theory, are: existence
of a dense layer between the bulk and the interface and the initial state dependent
oscillations at the bottom of the sample. These may be a direct consequence of the
local density approximation used for the mobility. A weighted density approximation
might be able to account for some of these features. Moreover, since the equation
is deterministic, 6uctuation dependent quantities (e.g., -4(t)) are not captured by the
formalism and noise has to be included [47].
Another interesting question concerns the role of friction. In realistic systems, the

energy injected by stirring, shearing, tapping, etc. is dissipated by the inelastic collisions
among the particles, creating a gradient of granular temperature [48–50]. Here we
assume that the injection of energy into the system happens as if the system were
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in contact with a thermal bath, a situation which is quite di$erent. In highly packed
granular systems, however, the steric hindrance is far more important than the energy
dissipation, as one is able to reproduce several features of compaction dynamics by
ignoring the speci7c mechanism of energy injection/dissipation.
Finally, we mention that slow relaxation in the KA model has also been analyzed in

terms of the dynamically available volume, expressed by holes density � [51]. A hole
is de7ned as an empty site where a neighboring particle satis7es the kinetic constraints
and may jump in. It has been recently suggested that dynamical arrest in di$erent
systems, such as glasses, colloids, gels, compressed emulsion and granulars, has a
universal character when described in terms of �. In particular, as one approaches the
transition, the di$usion coe8cient goes to zero as a power-law D=(�− �0)
, where �0
is the residual density of rattlers that do not contribute to the macroscopic di$usion,
and 
 is an universal exponent that assume the value 
= 2 irrespective of the system
considered [51]. It would be interesting to investigate to what extent the presence of
gravity, and consequently of a heterogeneous density pro7le might modify the above
results.
In conclusion, nonlinear di$usion equation and kinetically constrained models, in

spite of their simplicity, seem to capture the main dynamical features of dense granular
materials and provide a natural framework in which slow relaxation phenomena in
granular and glassy matter can be easily understood.
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