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Micellization in the presence of polyelectrolyte
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Abstract

We present a simple model to study micellization of amphiphiles condensed on a rod-like
polyion. Although the mean .eld theory leads to a .rst order micellization transition for su/-
ciently strong hydrophobic interactions, the simulations show that no such thermodynamic phase
transition exists. Instead, the correlations between the condensed amphiphiles can result in a
structure formation very similar to micelles. c© 2001 Elsevier Science B.V. All rights reserved.
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1. Introduction

Interaction between polyelectrolytes and ionic amphiphiles has attracted signi.cant
attention in both the molecular biology and the condensed matter physics communities
[1–13]. The driving motivation for this surge in interest is the possible application of
polyelectrolyte-amphiphile complexation in gene therapy [2]. One of the major stum-
bling blocks in designing a successful gene therapy is the lack of a transfection mech-
anism by which a DNA strand can be inserted into a cell [2]. The problem arises as a
result of strong electrostatic repulsion between the DNA and the molecular membrane,
both of which are negatively charged. This repulsion prevents a DNA segment from
coming in contact with a cell membrane, thus precluding any possibility of transfection.
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To overcome the electrostatic repulsion a number of protocols have been developed.
The most explored ones rely on genetically modi.ed viral vectors. A number of com-
plications which can arise from the viral gene therapy have stimulated a development
of non-viral methods [2]. One such method explores the association between a neg-
atively charged DNA and cationic lipids or surfactants. A particular method which
has attracted much attention relies on the formation of lipoplexes [3–5]. These are
complexes composed of a DNA strand and cationic lipid vesicles. Unfortunately, the
non-viral methods are also prone to problems since, as is well known, the cationic
surfactants and lipids are toxic to an organism [2]. An interesting question which then
arises is what is the minimum concentration of cationic amphiphile needed to form a
lipoplex or a surfoplex? This question is well posed, since it has been known for some
time that the polyelectrolyte-ionic amphiphile complexation occurs in a cooperative
manner [10,11,14–16]. It is, therefore, possible to identify the location of the coopera-
tive condensation with the critical concentration needed to form complexes. What is the
internal structure of such complexes? Are the condensed amphiphiles uniformly dis-
tributed along the DNA or do they form micellar aggregates on the surface of a polyion?
As a .rst attempt to study this di/cult problem, we shall appeal to a very simple
model [17,18].

2. The model

We consider a rigid polyion modeled as a cylinder of length Zb and radius Rb
inside a uniform medium of dielectric constant �. The total charge of a polyion,
−Zq, is uniformly distributed along the length of the cylinder so that each one of
the Z monomers has charge −q. To further simplify the calculations, the longitu-
dinal and angular degrees of freedom are discretized. The surface of the cylinder
is subdivided into Z parallel rings of n sites each. The m condensed amphi-
philes are restricted to move between the Zn ring sites, on the surface of the
cylinder.

Each amphiphile has a charged head group and a hydrocarbon tail. For generality,
we shall take the head group to have charge 	q. The hardcore repulsion between
the amphiphiles requires that each site is occupied by at most one amphiphile. For
the speci.c case of DNA and dodecyltrimethyl ammonium bromide (DoTAB) at the
cooperative binding transition, m ≈ 0:8Z [11,14].

We de.ne the occupation variables �ij, with i= 1; : : : ; Z and j= 1; : : : ; n, in such a
way that �ij = 1, if a surfactant is attached at jth ring position of the ith monomer and
�ij = 0, otherwise. Since the number of amphiphiles is .xed, the values of occupation
variables obey the constraint

Z∑
i=1

n∑
j=1

�ij =m :
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Fig. 1. Interaction between a surfactant in the ith ring with the jth monomer. The distance between the
surfactant and the monomer is r= b

√
R2 + (i − j)2.

The Hamiltonian for this model has the following contributions:

• Electrostatic surfactant–monomers interaction (see Fig. 1):

�H1 = − 	�
Z∑

i; j=1

n∑
k=1

�ik√
R2 + (i − j)2

; (1)

where we have introduced a dimensionless charge density, the Manning parameter
[19–21],

� ≡ �q2

b�
: (2)

• Electrostatic surfactant–surfactant interaction (see Fig. 2):

�H2 =
	2�
2

Z∑
i; j=1

n∑
k;l=1

�ik�jl(1 − �ij�kl)√
(i − j)2 + 4R2 sin2 ((�=n)|k − l|)

: (3)

• Hydrophobic interactions between the hydrocarbon tails:

�H3 = − �
Z∑
i=1

n∑
j=1

�ij�i; j+1 − �
Z−1∑
i=1

n∑
j

�ij�i+1; j ; (4)

where �i;n+1 = �i1. The .rst term of Eq. (4) is due to the interactions between the
nearest-neighbor amphiphiles on the same ring, while the second term is due the inter-
actions between equivalent sites on consecutive rings. The hydrophobicity parameter �
can be related to the size of the amphiphiles alkyl chain [14].

The hydrophobic interactions between surfactant and water, produce an eMective
attraction between the amphiphiles, forcing them to stick together. By doing so they
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Fig. 2. Distance between a surfactant located on the ith ring in the kth position and the surfactant located

on the jth ring and the lth position, r= b
√

(i − j)2 + 4R2 sin2(�|k − l|=n).

expel the water molecules from their vicinity, lowering the overall free energy. The
pairwise additive form of the hydrophobic interaction adopted in Eq. (4) is clearly an
over simpli.cation. Nevertheless, we expect that this simple expression will help shed
some light on the structure of the polyion–amphiphile complexes.

3. Mean �eld theory

To begin our study of the distribution of surfactants along the polyion we shall
appeal to the mean .eld theory [22,23]. A note of caution, however, must be raised.
While the mean .eld theory is expected to work very well for Coulombic long ranged
interactions, it might not be so successful with the short ranged hydrophobic forces.
This is particularly so, because the problem is intrinsically one dimensional, and the
Nuctuations associated with the short-ranged hydrophobic interactions are expected to
be signi.cant [16]. With this note of caution in mind we shall proceed with the mean
.eld study.

The Gibbs–Bogoliubov inequality puts an upper bound on the total free energy,
F6F0 + 〈H − H0〉0 ≡ OF, where F0 is the free energy associated with the trial
Hamiltonian H0. To perform the calculations we shall consider H0 to be of particularly
simple one body form,

H0 = q
Z∑
i

n∑
p

�ip �ip : (5)

The partition function associated with H0 can be calculated straightforwardly

Z0 =
∑
{�}

exp

{
−�q

∑
i;p

�ip�ip

}
=
∏
i;p

{1 + exp(−�q�ip)} (6)
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and the free energy is

F0 = − 1
�

∑
i;p

ln{1 + exp(−�q�ip)} : (7)

The average occupation of site p on the ring i, �ip ≡ 〈�ip〉0, is then

�ip =
1

1 + e�q�ip
(8)

or

�ip =
1
�q

ln
(

1 − �ip
�ip

)
: (9)

The free energy associated with H0 can be rewritten as

F0 =
1
�

∑
i;p

ln(1 − �ip) : (10)

After evaluating the average of 〈H −H0〉0 with respect to H0, the upper bound to
the total free energy becomes

� OF=
∑
i; j

ln(1 − �ij) − 	�
Z∑
i; j

n∑
k

�ik√
R2 + (i − j)2

+
	2�
2

Z∑
i; j

n∑
k;l

�ik�jl(1 − �ij�kl)√
(i − j)2 + 4R2 sin2 ((�=n)|k − l|)

− �
Z∑
i

n∑
j

�ij�i; j+1 − �
Z−1∑
i=1

n∑
j

�ij�i+1; j −
Z∑
i

n∑
j

�ij ln
(

1 − �ij
�ij

)
:

(11)

To .nd the optimum upper bound, Eq. (11) must be minimized with respect to the
average site occupation, leading to

�ij =
1

1 + e�(’ij+�)
; (12)

where � is a Lagrange multiplier introduced to enforce the constraint
∑

i; j �ij =m and

�’ij =−	�
Z∑
k

1√
R2 + (i − k)2

+ 	2�
Z∑
k

n∑
l

�kl(1 − �ik�jl)√
(i − k)2 + 4R2 sin2 ((�=n)|j − l|)

− �(�i; j−1 + �i; j+1) − �[(1 − �iZ)�i+1; j + (1 − �i1)�i−1; j] : (13)

Using the constraint above, � can be evaluated leading to a self-consistent equation for
the average site occupation,

�ij =
m

m+
∑

k; l (1 − �kl)e�(’ij−’kl) : (14)
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Fig. 3. Comparison between the pro.les predicted by the mean .eld theory and simulations results, for
�= 4:17, �= 1, Z = 201, m= 160, and n= 5.

Fig. 4. The mean .eld theory prediction for �= 1:3 and 1.4, �= 4:17, Z = 201, m= 160, n= 5. The peak is
an artifact of the mean .eld approximation.

Eq. (14) can be solved numerically to .nd the equilibrium amphiphile distribution
along the polyion.

In Fig. 3, we show the average number amphiphiles per ring along the polyion
for �= 4:17 and �= 1. We note that the amphiphiles are uniformly distributed along
the polyion except at the ends of the macromolecule, where their density is strongly
depleted.

For �≈ 1:35, a curious phenomenon occurs, as shown in Fig. 4. At this value of
hydrophobicity, the sites of the central ring become preferentially occupied by the am-
phiphiles. This corresponds to a micellization transition, in which the strong hydropho-
bic attraction between the surfactants overcomes entropy to produce a mesoscopic
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aggregate of amphiphiles. As � increases, a number of other peaks appear. Within
the mean .eld theory we .nd that the micellization transition is of the .rst or-
der. The fact that a short-ranged interaction produces a .rst order transition in a
pseudo-one-dimensional system should leave us concerned. To check the existence
of this transition we have carried out a set of Monte-Carlo simulations (MC).

4. Simulations

To simulate this model we use a standard Monte-Carlo with particle–hole exchange,
not restricted to nearest-neighbor pairs. The density pro.les and the energy were mea-
sured after thermalization, results being both time and sample averaged. The simulations
considered were done for DNA with �= 4:17, Z = 201, n= 160, m= 5 and various val-
ues of �. The averages were obtained using 100 samples.

For �¡ 1:35, we .nd that the mean .eld theory is in excellent agreement with the
MC. For �¿ 1:35, on the other hand, the simulations do not .nd any evidence of the
micellization transition present in the mean .eld (see Fig. 5). The energy is a smooth
function of �, with no indication of the .rst order micellization transition (Fig. 6). As
expected, the short-ranged hydrophobic interaction cannot result in a phase transition
in a one-dimensional system.

In spite of the absence of a true phase transition, the correlations between the con-
densed amphiphiles can lead to the formation of structures along the polyion. To
study these, we have constructed a histogram of amphiphile cluster sizes within the
Monte-Carlo simulation. Here, the size of a cluster is de.ned by the number of am-
phiphiles per ring. Fig. 7 shows that for amphiphiles with short alkyl tails (small hydro-
phobicity), the clusters are composed of only one amphiphile, with larger aggregates

Fig. 5. The Monte-Carlo density pro.les for �= 0 and 5 for a system with �= 4:17, Z = 201, n= 160 and
m= 5. For �= 5, the mean .eld theory predicts the existence of many peaks that are absent in simulation.
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Fig. 6. The energy dependence on � calculated using Monte-Carlo, �= 4:17, Z = 201, n= 160 and m= 5.

Fig. 7. Histogram of cluster sizes for Z = 201, n= 160, and �= 4:17.

being highly improbable. With the increase in � we .nd, however, that this is no longer
the case and that a signi.cant fraction of amphiphiles belongs to the maximum-sized
cluster of n amphiphiles. Although this is not a thermodynamic transition, the change
in behavior evident in Fig. 7 can be associated with the micellization.

5. Conclusions

We have studied a simple model of micellization in the presence of polyelectrolyte.
It is found that the mean .eld theory predicts a .rst-order micellization transition for
the ionic amphiphiles condensed on a polyion. This thermodynamic transition is an
artifact of the mean .eld approximation and is the result of the neglect of Nuctuations
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associated with the short-ranged hydrophobic interactions. Monte-Carlo simulations
show that the mean .eld works very well for small hydrophobicities, but fails com-
pletely for strong short-ranged interactions. Indeed, the simulations do not .nd any
evidence of a phase transition. Nevertheless, if the hydrophobic interactions are suf-
.ciently strong they will lead to signi.cant correlations between the condensed am-
phiphiles, which can be interpreted as a micellar formation along the polyion chain.
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