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We present analytical and numerical results for a truncated version of the RS model for 
neural networks and also for the generalization of the Hopfield model that considers 
multineuron interactions. Static properties are analyzed in the replica mean-field approach 
and dynamical aspects are studied through numerical simulations using the multispin coding 
algorithm. The load capacity, the sizes of the basins of attraction and the mean convergence 
time are presented in order to compare the performance of both models as associative 
memories and to get insight into the shape of their energy landscape. 

1. Introduction 

Ising-like neuron models have been investigated in order to understand 
properties of real nervous systems [1,2]. These models consider connected 
arrays of binary spins and present a non-trivial behavior that is analytically and 
numerically studied with the tools provided by statistical mechanics. 

Networks with N infinite range interacting binary spins (.Si = +l) associated 
to the state of the neurons (active or inactive) are considered to describe 
learning, storage, and retrieval of information. N-dimensional vectors S = 

(S,, . * . , S,) represent the possible configurations of the network and the 
stored information is associated to P of these states (the patterns), denoted by 
the vectors g’, p = 1, . . . , P. The network load is measured by the parameter 
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a = PIN and its critical value, CQ, is the maximum (Y for which the network 
state, for a given energy function E(S), has non-zero superposition with one of 
the embedded patterns. Different models consider diverse prescriptions for this 
energy function and for implementing as their minima the P nominated 
patterns. The performance of a model can then be measured by its storage 
capacity and its ability in recalling the patterns, e.g., the maximum allowed 
noise in an initial configuration and the time needed by the net to evolve and 
stabilize at, or near, one of the P memories. 

The Hopfield model with the Hebb learning rule [2] describes satisfactorily 
an associative memory when the stored patterns are uncorrelated, provided 
that (Y < (Y, 2: 0.138. Beyond this value, the retrieval ability of the network is 
destroyed. By introducing different learning rules or different energy functions 
one may attempt to bypass these and other difficulties. For example, the 
storage capacity can be enhanced by considering multisynapses between the 
neurons [3,4]; this idea has a biological motivation: axon-axon-dendrite 
connections, for instance, are relatively common in real nervous systems and 
can be described as third order synapses (see [4] and references therein). More 
intricate connections, involving more than two axons, may exist in the brain. 
However, since binary synapses are highly dominant, higher order terms 
should be considered as corrections to those terms. As stressed in ref. [4], this 
feature may play an essential role in the functioning of central nervous systems 
of superior vertebrated organisms. 

Several works have already contemplated the idea of multispin interactions 
by generalizing the Hopfield model and Hebb learning rule by a monomial of 
degree k > 2 in the Ising spins [3]. Alternatively, the RS model [5] simulta- 
neously considers several orders of interactions, besides the second order 
Hopfield term, with a simple underlying idea: the energy of a given configura- 
tion is proportional to the product of the Hamming distances between the net 
state and each one of the stored patterns. Although the original RS model 
yields an ideal phase space, where the only minima of the energy are the stored 
patterns (and symmetric states in the case of correlated stored information) 
[5,6], all orders of interactions up to P are present. Nevertheless, higher order 
terms are less significant, indicating that they may be neglected under adequate 
circumstances. In this paper we present a truncated version of the RS model 
(TRS), and study the effect of the first correction to the Hopfield term. We 
also investigate the effect of a Hopfield-like, fourth order correction and 
compare both prescriptions. 

The paper is organized as follows: section 2 defines the models, sections 3 
and 4 present the analytical and simulation results respectively and finally in 
section 5 we summarize and discuss our conclusions. 
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2. The models 

2.1. The RS model and its truncated version 

The RS energy function [5] for a network of N spins is 

(1) 

this energy function is proportional to the product of the Hamming distances 
between the network state S and the pth pattern 5’. From eq. (1) it is clear 
that E(S) 2 0 and E(S) = 0 if S = g”, for any p. It means that, no matter how 
large is (Y, the patterns are always global minima of E. Considering the 
overlaps m, between the state of the net S and the pattern e’, given by 

the energy function, eq. (l), can be written as 

P 

E=N n (l-m,). 
p=l 

(3) 

This energy function is not invariant under the transformation mp + -m,, 
therefore the antipatterns -5” are not stored. Nevertheless, for every pattern 
one can also consider its antipattern, by teaching the network both 5’ and 
-&‘, for every p. These extreme cases, when patterns and antipatterns are 
stored (PAS) or when only the patterns are stored (OPS), present strikingly 
different behaviors and a complete discussion of the phase space landscape in 
the (Y + 0 limit as well as simulation results can be found in refs. [5,6]. 

In the following we concentrate on the PAS case, that reduces to the 
Hopfield model for uncorrelated patterns and low load parameters: in this case 
the higher order terms are zero in the thermodynamic limit. The energy 
function can be rewritten in terms of the overlaps m, and it reads 

E=N fi (1-m:). 
p=l 

(4) 

The multineuron interaction feature of this equation becomes evident when 
it is displayed as 
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for a network storing P patterns and the corresponding P antipatterns. Notice 
that although the first non-trivial term is the Hopfield energy function, the 
higher order ones are different from any previous model because they contain 
mixed memory terms. Now we define an energy function, by neglecting the 
constant zeroth order one and considering the next M terms. This energy 
function, renormalized by a factor l/2, reads 

E = : 8 (-1)’ c 
I 1 PI<“‘<& 

rni,rnL. . * m:, . (6) 

Eq. (6) defines a model for neural networks, which can be regarded as the 
Hopfield model plus correction terms. These terms should prove themselves 
relevant where the Hopfield model fails: when correlated patterns are consid- 
ered or the load parameter LY is higher than its critical value (Y, = 0.138. In what 
follows we consider only the first correction to the Hopfield term (M = 2). Eq. 
(6) can then be rewritten as 

E = - $ c JiiSiSj + ; c J;rSiSjSkSl , 
l.1 l,l.kJ 

The learning rule for the second order coupling Jij is the Hebb prescription. 
The fourth order synapses JiE, on the other hand, may be implemented 

through the following rule: 

where 6”’ is the (P + 1)th pattern to be taught to the net. Eq. (8) can be seen 
as the multisynapses described in the introduction: the last term is the action of 
two axons upon a binary synapse. Remark that while binary connections are 
symmetric, i.e. Jij = Jji, the fourth order ones do not present the full symmetry 
under all possible indices interchange. Anyway, these couplings can be re- 
written in a symmetric form [7] 

and, for the symmetric couplings Jtik,, the energy (7) is a Liapunov function for 

the dynamics 

Si(t + 1) = %n (7 JijSj(t) - ,zI J&klSj(f) Sk(t) S,(t)) . (10) 

This allows us to use the tools of statistical mechanics. 
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In the following sections we investigate this model both in the replica 
mean-field approach and through numerical simulations. 

2.2. The generalized Hopjield model 

In order to compare performances, we also contemplate a generalization of 
the Hopfield model (GH) that considers multispin interactions, namely 

> 
, k>2, 

where k is an integer. In this case the learning rule is 

(11) 

(12) 

Again, the differences between both models are in the fourth order con- 
nections. This system has a completely different static and dynamical behavior 
from the one defined by eq. (6). Previous works [3] considered always a unique 
term of order k. Here we address the problem of having a kth order term as a 
correction to the original second order Hopfield model. This higher order 
correction does not change qualitatively the behavior of the net. Also, since 
the lowest order interaction 1 in the energy function defines (Y, (P scales with 
N*-‘), the presence of the second order term implies that the maximum 
number of patterns that can be stored is proportional to N, as in the TRS 
model. This result can be easily obtained by a simple signal-to-noise analysis 
[9] and is confirmed by the forthcoming calculations and simulations. 

3. Mean field theory 

3.1. The TRS model 

The mean field analysis is performed by means of the standard techniques 
introduced by Amit et al. [8]. In the GH model, the cross-talk noise is 
governed by the second order term while the kth order one contributes only to 
the signal term. On the other hand, in the TRS model, there is a contribution 
from the higher order terms to the overall noise due to microscopically 
overlapping patterns. Truncating at fourth order and rewriting the TRS energy 
function, eq. (6), as 

(13) 
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the free energy per neuron can be obtained in the replica trick context and 
after performing the n+O limit and taking the replica symmetric ansatz: 

f=-f(l-y)~~~-~~m~-~yZ+Cr,m,+$ln[l-~(l-y)(l-q)] 
c P 

1 %I(1 - Y) 
-z 1 - p(1 - y)(l - q) 

+ $apr(l - q) - $ ((ln2cosh /3 (t. 5 + fiz))) , 

(14) 

where y is introduced to linearize the last term in eq. (13) and the variables t, , 
q, and r are usually introduced to linearize the non-linear terms. The symbol 
(( >> stands for two averages: over the finite number of patterns that may 
condense and over the Gaussian variable z, related to the infinite microscopic 
overlapping memories. The saddle point equations are 

m=((Stanhp(&.t+fiz))), (15) 

t,=(1-yy)m,+m:, (16) 

q= ((tanh$(t.e +mz))), (17) 

( 1-Y 
T=q l-P(l-y)(l-q) ' > 

2 

Y’C 
l- P(1 -Y)(l -d2 

II mi + (y [l - p(1 - y)(l - q)12 * (19) 

We investigate solutions to the saddle point equations that present a macro- 
scopic overlap m with one of the memories (mP = &jIP) at T = 0, which will 
be compared to the simulation results. 

The T = 0 ( p + 00) limit of the saddle point equations is 

m = erf & , 
( > 

t=(1-y)m+m3, 

( l-y 2 
r= l- C(1 -y) ’ ) 

Y = m2 + c1 :;I2 , 

C=&$=p(~), 

(20) 

(21) 

(22) 

(23) 

(24) 
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where q = 1 and C = /3( 1 - q). These equations are numerically solved for 
several values of a and the results are compared with the simulation whose 
details will be presented later. The numerical solution and simulation results 
are shown on fig. la and present a continuous transition (m - Ia - a,ll” as 
a - a,) from the retrieval phase to a zero magnetization one. The critical 
value for the load parameter, a, is obtained by expanding the above equations 
for small m: 

(25) 

3.2. The GH model 

Here we consider fourth order corrections (k = 4) in eq. (11) and follow the 
same procedure as in the previous section: the equations to be solved are the 
same as in the original Hopfield model [8] except for tr. They read 

(26) 

(27) 

q=((tanh*@(t.&+mz))), (28) 

t- = [l - p; - q)]* * (29) 

As in the standard Hopfield model, we also found a first order transition 
between the retrieval (ordered) phase and the spin glass phase with the critical 
value for the load parameter a, = 1.556, obtained with replica symmetry. The 
value of m at the criticality is 0.936. 

0.4 

-1.0 

0.0’ ’ 

O (a) ' i 3 
' (b) 

1 2 2 

a 

Fig. 1. Final overlap versus a for (a) the TRS model showing the continuous transition and (b) for 
the GH model showing the first order transition. The tidl curves are the mean field predictions. 
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4. Sitnulation results 

In this section we present results obtained from zero temperature simulations 
of the dynamics of the previously presented models for network sizes of 
N = 128,256, 512 and 1024 neurons. The steps are: an initial state with overlap 
m, with one of the embedded memories is generated and a spin flip test is 
sequentially applied: a spin is flipped whenever this lowers the energy. This 
procedure is repeated until a stable fixed point is reached and several quantities 
are measured as, for instance, the final overlap m, with the chosen memory and 
the number of steps required to reach the final state (convergence time). 

In order to save computer memory and decrease computation time, we use 
the multispin coding algorithm proposed by Penna and de Oliveira. For further 
details on this algorithm we refer the interested reader to references [lo]. 

The maximum value of (Y for which the network stabilizes at, or very near, 
an embedded pattern (m, 2: 1) gives information about the loading limit of the 
network. For an initial overlap m, = 1 with a given memory, we measured the 
final overlap with that pattern for several values of (Y. The results are shown on 
fig. 1 where we can see fundamental differences between the behavior of both 
models. The transition is continuous for the TRS model, that is, the retrieval 
quality, measured by the final value of the overlap m,, decreases monotonically 
to a small value as (Y increases. The magnetization is not zero for (Y > (Y,, in 
contradiction to mean field predictions, but stabilizes around 0.1. This residual 
magnetization for the (generalized) Hopfield model is approximately 0.2. Also, 
the comparison with mean field calculations, presented in fig. 1, shows that the 
simulation yields a different (Y,. This difference is probably due to the replica 
symmetry instability at T = 0, what is supported by the negative entropy at 
zero temperature obtained with the replica symmetry ansatz. 

On the other hand, for the GH model with fourth order correction terms, 
there is a jump in the retrieval parameter at (Y,, and the retrieval quality is 

. reasonable (near 1) up to (Y = (Y,. the transition is discontinuous, as in the 
standard Hopfield model. Again, the discrepancy from the predicted value for 
(Y, is caused by the replica symmetry instability at T = 0. 

We also investigated the evolution of the net for initial overlaps different 
from one, m, < 1, in order to measure the size of the basins of attraction (fig. 
2). For the GH case, the bigger is (Y, the smaller are the basins, qualitatively 
reproducing the results of the original Hopfield model [ll]. Observe that 
curves with different values of N but same (Y superpose, allowing a finite-size 
scaling analysis [ll] to obtain m,(a), the minimum critical overlap for which 
the memories can be successfully recalled. In the TRS case, however, the 
basins seem to be independent of LY because curves with different load 
parameters (Y superpose. In this case, m, - 0.1 for all (Y < (Y,, implying big 
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Fig. 2. Final overlap versus the initial superposition m, for both models, (a) TRS and (b) GH. The 
basins of attraction are bigger for the TRS model but the retrieval fidelity is lower. The symbols 
(both blank and filled) size correspond to the legend of fig. 1. 

basins of attraction. The comparison between the performance of these two 
models seems to put in evidence a compromise between the size of the basins 
of attraction and the retrieval quality, when the network load (Y increases. 

Mean convergence time ( T), that is, the average number of steps (whole 
network updating) required to reach a stable state, and the corresponding 
dispersion are supposed to be related to the irregularity of phase space around 
the memories [12]. In some models, long convergence times and large disper- 
sions are related to the number of spurious states: when there are many 
metastable states around the true stored information, there are also many 
paths with different lengths leading the stimulus to the information. Besides 
increasing the average convergence time, this diversity of lengths also implies 
in larger dispersions cx However, this interpretation is only valid when the 
stored pattern is at, or very near, the minimum of the basin of attraction, that 
is, the mean final retrieval quality (mr) is near 1. On fig. 3b the mean 
convergence time is shown for the generalized Hopfield model: if the initial 
state is out of the basin of attraction, the necessary time to reach a stable state 
grows as the network increases, while inside the basins just one or two steps 
are enough. 

In the TRS case, shown on fig. 3a, the mean convergence time is in- 
dependent of the initial overlap: for any initial overlap, the necessary number 
of steps to reach the stationary state is roughly the same. In order to 
understand this peculiar behavior we remark that for large values of a the state 
at the bottom of the basin of attraction in the TRS model can be measurably 
different from the embedded pattern (what does not happen in the GH model 
below a,) due to the continuous transition: the final overlap m, for the TRS 
model decreases continuously from one to small values as a increases. In this 
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(a) m. (b) m. 

Fig. 3. Mean convergence time versus the initial overlap. In the TRS model (a) there is no 
dependence on the initial overlap while in the GH case (b) the convergence time depends on if the 
initial state is in or out of the basin of attraction. 

case, when initial states with overlap m, with the chosen pattern are generated, 
they lay on the surface of a hyper-sphere of radius proportional to 1 - m, 
centered at the pattern. On average, the distance in the phase space from these 
initial states to the bottom of the basin of attraction is equal to the distance 
from the memory to the energy minimum, independently of m,. Consequently, 
the convergence time does not depend on m,. For small values of LY, on the 
other hand, the retrieval quality is good (m, = 1) and the argument does not 
hold anymore: indeed, a small decrease in the convergence time is observed as 
m, increases. 

This geometry also implies that non-zero dispersions around the mean 

16 
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Fig. 4. Mean convergence time versus a. In both models the curves for m, = 0.3 and 0.8 merge 
signaling either (a) independence of the initial conditions (TRS) or (b) a > (Y, (GH). 
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convergence time are not always signaling the existence of metastable spurious 
states: whenever the stored pattern is measurably distant from the bottom of 
the basin of attraction (m, % 1) a non-zero dispersion in the convergence time 
will be detected due to different distances from initial states to the energy 
minimum. In summary, for continuous transitions the existence of metastable 
spurious states is not assured by non-vanishing dispersions around the mean 
convergence time alone. 

The mean convergence time is also plotted versus the load parameter (Y, figs. 
4a and b, for two values of the initial overlap m,. In the GH case, for 
m, = 0.3, ( T) becomes independent of (Y unless (Y is low enough. For higher 
values of (r, this initial overlap is too small and the initial state is no longer 
inside the basin of attraction. However, for m, = 0.8, the convergence time is 
low until we reach cut and both curves (for m, = 0.3 and 0.8) merge, indicating 
that the basins of attraction (and the stability) of memories are destroyed. In 
the TRS model, the differences between both curves exist only for small (Y and, 
as (r increases, both curves merge confirming the independence of ( T) on the 
initial overlap. 

5. Discussion and conclusions 

We compared the effect of two different fourth order corrections to the 
standard Hopfield model by considering two models- GH and TRS- and 
investigated their performances both through numerical simulation and analyti- 
cally in the replica symmetric ansatz. The GH model considers a Hopfield-like 
fourth order term while the TRS energy function is obtained by truncating the 
RS model at the fourth order. Both corrections improved the load capacity of 
the net but acted over different aspects, as it is discussed in what follows. 

(a) The GH model presents a discontinuous transition at (Y, = 1.556. This 
critical value was obtained in the replica symmetric ansatz and is confirmed by 
numerical simulations. The overall behavior is qualitatively similar to the 
Hopfield model: for cy < (Y, the retrieving quality is good (m, = 1) and the size 
of the basins of attraction decreases with (Y. Consequently, as (Y, is larger due to 
the correction term, the basins of attraction may become too small. 

(b) The TRS model presents a continuous transition at (Y, = 3.232. How- 
ever, this higher value cannot be taken as an improvement in comparison to 
the GH model because here the transition is continuous: for (Y > 1 the final 
overlap m, is lower than 0.9 and the retrieving quality is not reliable any more. 
On the other hand, the size of the basins of attraction are independent of (Y, as 
shown by the simulations. Also the convergence time (T) increases with cy 
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and, as a consequence of the continuous transition, for high values of the load 
parameter, ( T) does not depend on the initial overlap m,. 

As a further conclusion, we found that for transitions where the final overlap 
m, decreases continuously to small values, non-zero dispersions around the 
average convergence time do not necessarily indicate the existence of spurious 
states near the memories: when m, is measurably different from one, the initial 
m,-overlapping states lay at different distances from the actual minimum 
(which is not the memory) and consequently may present diverse convergence 
times to stabilize at the bottom of the basin of attraction. To obtain informa- 
tion about the landscape around the bottom of the basin we must create an 
initial state with effective overlap with it, not with the embedded pattern. 

Finally, the fourth order synapses introduced here are meant to be correc- 
tions to the Hopfield model and it would be interesting to study their relative 
importance with respect to the original second order connections. This can be 
implemented by considering weights in the fourth order terms. Particularly the 
TRS model, which shows qualitatively diverse behavior in respect to the 
original Hopfield model, presents a crossover as the relative weight varies from 
zero to one. However, these investigations are beyond the scope of this paper 
and will be presented elsewhere. 
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