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Abstract. — The equilibrium properties of the Blume-Emery-Griffiths model with bilinear
quenched disorder are studied for the case of attractive as well as repulsive biquadratic inter-
actions. The global phase diagram of the system is calculated in the context of the replica
symmetric mean field approximation.

1. Introduction

The Blume-Emery-Griffiths (BEG) [1] model has been successfully applied to explain the be-
havior of different physical systems such as He3-He4 mixtures, microemulsions, semiconductor
alloys, to quote only a few. In this paper we investigate the effect of quenched disorder on the
mean field phase diagram of a version of the BEG model in which orientational and particle
degrees of freedom are explicitly introduced. We consider the Hamiltonian:

H = −
∑
i<j

JijSiSjninj −
K

N

∑
i<j

ninj − µ
∑
i

ni, (1)

where Si = ±1, ni = 0, 1; the bilinear couplings Jij are quenched Gaussian random variables
with average J0/N and variance J2/N , and the sign of biquadratic interaction may be negative.
This Hamiltonian represents a general framework to study the complex behavior of many
physical systems. In the simple case of pure systems it describes, for example, a fluid model with
magnetic properties like those of polar liquids, which exhibits multiple exotic phase diagrams
[2–6]. In presence of quenched disorder the Hamiltonian (1) implements different models whose
rich phase diagrams are not yet fully explored. Some limiting cases include the standard Ising
spin glass [7] (µ → ∞; ni = 1 ∀i) and the Ghatak-Sherrington model [8–13] (K = 0). In the
particular case of K = −1 we recover the Frustrated Ising Lattice Gas [14,15] that is a version
of the Frustrated Percolation model [16], whose properties suggest a possible close connection
with the theories of structural glasses [17]. Essentially, the model considers a lattice gas in a
frustrated medium where the particles have an internal degree of freedom (given by its spin)
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that accounts, for example, for possible orientations of complex molecules in glass forming
liquids. These steric effects are greatly responsible for the geometric frustration appearing in
glass forming systems at low temperatures or high densities. Besides that, the particles interact
through a potential that may be attractive or repulsive depending on the value of K.

Here we try to further elucidate the phase diagram properties of Hamiltonian (1) within
a replica mean field theory approach. Specifically, the presence of disorder in the bilinear
term leads to the appearance of a transition from a paramagnetic to a spin glass phase at
low temperature or high density. When the biquadratic interaction is attractive or weakly
repulsive we found, accordingly with the value of density, two spin glass transitions of different
nature separated by a tricritical line: at high density the transition is continuous while at
sufficiently low density the transition becomes discontinuous. When the particle repulsion is
rather strong two new phases with a sub-lattice structure may appear: an antiquadrupolar
phase and at lower temperatures, an antiquadrupolar spin glass phase. The antiquadrupolar
spin glass transition line is always continuous whatever is the value of the chemical potential.
When the bond weights are not symmetrically distributed, a ferromagnetic phase (as well as
a ferrimagnetic one, depending on the value of J0) may appear in the phase diagram. One
can also identify a line where a dynamical instability appears, as in spin glass models with
discontinuous transition like the Potts glass [18, 19] and the p-spin model [17, 20]. Moreover,
preliminary results on the stability analysis indicates the presence of a transition line from a
‘phase’ with one to a ‘phase’ with infinity replica symmetry breaking. This rich scenario and
the unification picture provided by the model are the main motivations of this paper.

2. The Phase Diagram

Many general properties of the phase diagram of Hamiltonian (1) may be observed by sim-
ply studying the replica symmetric solutions of the mean-field equations. In the following
paragraphs we discuss how the many thermodynamic phases appear when the parameters of
Hamiltonian (1) are changed.

For the sake of clarity we work out separately the cases of attractive, K > 0, and repulsive,
K < 0, biquadratic interaction.

2.1. Attractive Biquadratic Interaction. — Using the replica method the free energy
can be computed as:

βf = − lim
n→0

1

n
ln[Zn]av, (2)

where n is the numbers of replicas and [· · ·]av denotes the average over the disorder. We obtain:

βf = lim
n→0

1

n

[
1

2
β2J2

∑
a<b

q2
ab +

1

2
βJ0

∑
a

m2
a +

1

4
(β2J2 + 2βK)

∑
a

d2
a − lnZ′

]
, (3)

where Z′ is the single site partition function:

Z′ = Tr
S,n

exp

{
β2J2

∑
a<b

qabS
anaSbnb + β

∑
a

J0maS
ana

+
∑
a

[(
β2J2

2
+ βK

)
da + βµ

]
na

}
, (4)
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and the order parameters: density (da), magnetization (ma), and Parisi overlap (qab), are
defined as

da = 〈na〉 , (5)

ma = 〈Sana〉 , (6)

qab =
〈
SanaSbnb

〉
. (7)

In the replica symmetric approximation, ma = m, da = d and qab = q(1− δab), one finds:

βf =
1

2
βJ0m

2 −
1

4
β2J2q2 +

1

4
(β2J2 + 2βK)d2

−

∫
Dz ln 2

[
1 + eΞ cosh(βJz

√
q + βJ0m)

]
, (8)

where Dz = dze−z
2/2 is the standard Gaussian measure and we define:

Ξ ≡
β2J2

2
(d− q) + βKd + βµ. (9)

The order parameters satisfy the saddle point equations:

d =

∫
Dz

cosh(βJz
√
q + βJ0m)

e−Ξ + cosh(βJz
√
q + βJ0m)

, (10)

q =

∫
Dz

sinh2(βJz
√
q + βJ0m)

[e−Ξ + cosh(βJz
√
q + βJ0m)]2

, (11)

m =

∫
Dz

sinh(βJz
√
q + βJ0m)

e−Ξ + cosh(βJz
√
q + βJ0m)

. (12)

Notice that with a suitable transformation of our parameters (βµ→ βµ− ln 2) we recover the
equations obtained using spin-1 variables.

2.1.1. The Case J0 = 0. — The simplest case in this situation corresponds to a zero disordered
average, J0 = 0. As can be seen in Figure 1, where the phase diagrams in the plane (T, µ)
are depicted for several K, at low temperatures or high values of the chemical potential (high
densities), there is a phase transition from a paramagnetic (P; m = q = 0) to a spin glass
(SG; m = 0, q 6= 0) phase. For positive values of K (and J0 = 0), these are the only phases
allowed to the system. They are separated by a continuous transition up to a tricritical point,
Ttrc, below which a discontinuous transition is observed. We just note that the Sherrington-
Kirkpatrick (SK) model with its critical temperature Tc/J = 1 is recovered in two limits, both
giving the highest possible density (d = 1): µ→∞ or K →∞.

We locate the continuous transition by expanding the saddle point equations for small values
of q, what leads to

J

Tc
= 1 + exp

(
−
K

J
−

J

2Tc
−
µ

Tc

)
. (13)

This equation is valid up to the tricritical point that may be located by expanding the single
site partition function around the transition line where qab = 0 and da = d̃ [21]. This leads to:

Ttrc

J
=
−3 + 2K/J +

√
9 + 4(K/J)2 − 4K/J

4K/J
. (14)
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Fig. 1. Fig. 2.

Fig. 1. — Phase diagram for several values of K/J showing the paramagnetic (above) and spin glass
phase (below the line). The continuous line stands for the second order transition while the long dash
line is the discontinuous transition. Also depicted (dotted line) the line where the solution q 6= 0 first
appears; while the small dash line is a line of tricritical points.

Fig. 2. — The order parameter d at T = 0 for K/J = −1, 0 and 1. The dotted part signals the region
where non zero solution of saddle point equations first appears. Observe that there is a particular
value of the chemical potential, µ∗, where the density becomes lower than 1.

For instance, if K/J = −1 we get Ttrc/J = (5 −
√

17)/4 ' 0.219 and µtrc/J ' −0.559 [14].
The line Ttrc(K) is also shown in Figure 1.

The exploration of our equations in the T = 0 limit offers a simple tool to understand
the subtle properties of the phase diagrams reported above. Moreover, remembering that our
model shares features with the frustrated percolation where no frustrated loops may be closed,
it is interesting to study the behavior of the density d at T = 0. This behavior is depicted in
Figure 2. At T = 0 the saddle point equations become:

d = erfc

[
−

1
√

2d

(
1

2
C +

K

J
d+

µ

J

)]
, (15)

where C ≡ βJ(d− q) and:

C =

√
2

dπ
exp

[
−

1

2d

(
1

2
C +

K

J
d+

µ

J

)2
]
. (16)

Actually, d satisfies these equations up to µ∗ given by

µ∗ = −K −
J
√

2π
, (17)

below which the close packing configuration is never achieved (d < 1); above µ∗, d = 1 and
C =

√
2/π. The point µ∗ (see Fig. 2) individuates a clear cusp in the behavior of d(µ)|T=0

and seems to be a characteristic value for the system. We also observe that for high values of
K, K >

√
2/π, the region with 0 < d < 1 disappears.

From the tricritical point other two lines depart in the plane (µ, T ) (see Fig. 1). They
correspond to a thermodynamic line of discontinuous transitions from a paramagnetic to a SG
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phase, located where the free energy of the paramagnetic and spin glass solution are equal;
and a purely dynamical transition line whose presence is due to the large number of TAP
metastable states [22] which can trap the system for very long times (infinite time in the mean
field model) [24,25]. The study of this metastable glassy states within a suitable generalization
of the TAP approach to the present model is in progress [23].

In order to identify the dynamical transition line we should compute the smallest eigenvalue
(replicon) of the 1RSB stability matrix and impose the marginality condition [26]. An alter-
native procedure amounts to expand the 1RSB free energy (see appendix) around the point
m = 1, where m denotes here the size of diagonal blocks in the Parisi ansatz [19]. However
at level of the approximation we work (replica symmetry) we can guess that the dynamical
transition line is located near the line where a non zero solution of replica symmetric saddle
point equations first appears; however, to check this point a more detailed investigation will
be need.

When the temperature and chemical potential are close enough to the discontinuous transi-
tion line we expect that the glassy phase of the system is exactly described by only one step of
replica symmetry breaking [23]. On the other hand, when µ→∞ (the SK model), the full RSB
scheme, with infinite steps, is needed in order to obtain the correct answer. Thus, a further
“replica transition line” from a SG phase with one (or finite) replica symmetry breaking level
to a SG phase with infinite levels of replica breaking is expected to start at the tricritical point
and terminate on the T = 0 axis in some characteristic point, probably near µ∗. This transition
line is expected to separate qualitatively different aging behaviors of the system [27–29].

We can also apply a magnetic field to the system by including a term like −h
∑
i Sini to

the Hamiltonian (1) (this is done by adding the term βm to the argument of the hyperbolic
functions in the saddle point equations). The continuous transition is destroyed as soon as h 6= 0
and the first order transition ends in a critical point, the system presenting the characteristic
wing shaped phase diagram. The effects of a magnetic field, as well as the stability of the RS
solution in its presence were extensively studied for the Ghatak-Sherrington model [13].

2.1.2. The Case J0 6= 0. — Having given some details for the case J0 = 0, we face below the
more general situation when J0 is different from zero [32]. There are now three kind of phases
(see Fig. 3): a paramagnetic and a spin glass phase with essentially the same characteristics
we have discussed above, along with a ferromagnetic phase (F; q 6= 0, m 6= 0) which appears,
as usual, in the low temperature region (or high µ) when J0 � J . As in the SK model, this
ferromagnetic phase is reentrant (in RS), although here the degree of reentrance may vary.

When the transitions between these phases are continuous (e.g., Fig. 3), the boundary lines
may be analytically obtained. The boundary between F and P is given by

J0

Tc
= 1 + exp

(
−
µ

Tc
−
K

J0
−

1

2J0Tc

)
, (18)

while the boundary between SG and F obeys

Tc = J0(d− q), (19)

where d and q are obtained solving the saddle point equations with m = 0. And the boundary
between SG and P is our former result (Eq. (13)). Notice that in the limit µ (or K) →∞ , we
recover the SK boundaries (Tc = J for SG-P, Tc = J0 for F-P and Tc = J0(1 − q) for SG-F).

Changing the value of the chemical potential the transitions may become discontinuous, as
can be seen in Figure 4 for µ = −0.6 and K = −1, where a tricritical point and an endpoint
show up.
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Fig. 3. Fig. 4.

Fig. 3. — Phase diagram for K = −1 and µ = 0. The reentrance is an artifact of the RS approxima-
tion. All transition lines are continuous and look much the same as the SK boundaries.

Fig. 4. — Phase diagram for K = −1 and µ = −0.6. The continuous lines are continuous transitions
while the dashed lines stand for discontinuous transitions. Notice that the line SG-F ends in an
endpoint and the transition F-P is discontinuous up to the tricritical point.

Fig. 5. — Phase diagram at T = 0 for K = −1 showing the critical endpoint when both curves meet.

As usual the analysis at T = 0 is interesting. In this limit we get the following equations:

d =
1

2
erfc

(
−1

2C −Kd− µ − J0m
√

2d

)
+

1

2
erfc

(
−1

2C −Kd− µ + J0m
√

2d

)
, (20)

m =
1

2
erfc

(
−1

2C −Kd− µ− J0m
√

2d

)
−

1

2
erfc

(
−1

2C −Kd− µ+ J0m
√

2d

)
, (21)

and

C =

√
2

dπ
exp

[
−

(
1
2C +Kd+ µ

)2
+ J2

0m
2

2d

]
cosh

[
−
J0m

d

(
C

2
+Kd+

µ

J

)]
. (22)

We can then individuate the location of the continuous transition line, in the plane (J0, µ),
between the F and SG phases (Fig. 5). It occurs where m → 0 so, expanding the above
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equation in m, we get:

J0 =

√
πd

2
exp

[(
1
2
C +Kd+ µ

)2
2d

]
. (23)

Here d and C are evaluated in the points where m = 0. This equation is valid up to a given
µ∗ = −K − 1/

√
2π (note that since m = 0 on this transition line, we just recover our former

result) and above this value, we find J0 =
√
π/2 ' 1.253.

As is well known in the SK model, when J0 grows too much, the SG phase disappears. A
similar phenomenon happens here, but the order of the transition between the phases F and
P depends on the value of µ, as expected. Notice that we are considering K = −1, but in
the next section we will show that for this value there are no antiquadrupolar (glassy or not)
phases and the characteristics presented here are also general for greater values of K. We
expect that for negative values of K or J0, there is also the possibility of having ferrimagnetic
or anti-ferromagnetic ordering, respectively. The former is characterized by having different
magnetizations in the sublattices (mA 6= mB) and the latter by having opposite magnetizations
(mA = −mB). The analysis of these phases is beyond the scope of this paper.

2.2. Repulsive Biquadratic Interaction. — Because the sign of the biquadratic coupling
is now negative we have to take into account the possibility of further phase ordering within
a two sub-lattice structure. This for instance is the case studied in references [2–6] in absence
of quenched disorder and in reference [33] but only for µ = 0. When µ → ∞ we recover
the anti-ferromagnetic Sherrington-Kirkpatrick model, studied in reference [34], and following
their prescription, the Hamiltonian can be rewritten as:

H = −
∑
i,j

JijS
A
i S

B
j n

A
i n

B
j −

K

N

∑
i,j

nA
i n

B
j − µ

∑
α=A,B

∑
i

nαi , (24)

where α = A,B is the index of the two sub-lattices. Using the replica method we obtain the
following free energy:

βf = lim
n→0

1

n

[
1

2
β2J2

∑
a<b

qabA q
ab
B +

1

2
βJ0

∑
a

ma
Am

a
B

+
1

4
(β2J2 + 2βK)

∑
a

daAd
a
B −

1

2
lnZAZB

]
, (25)

where Zα (α = A,B) is the single site partition function of the sub-lattice α:

Zα = Tr
S,n

exp

{
β2J2

∑
a<b

qabSanaSbnb + β
∑
a

J0m
aSana

+
∑
a

[(
β2J2

2
+ βK

)
da + βµ

]
na

}
. (26)

In the replica symmetric approximation the free energy can be easily computed:

βf =
1

2
βJ0mAmB −

1

4
β2J2qAqB +

1

4
(β2J2 + 2βK)dAdB

−
1

2

∑
α=A,B

∫
Dz ln 2

[
1 + eΞα cosh(βJz

√
qα + βJ0mα)

]
,



952 JOURNAL DE PHYSIQUE I N◦8

where

Ξα ≡
β2J2

2
(dα − qα) + βKdα + βµ. (27)

From the free energy, one derives the replica symmetric saddle point equations:

dA =

∫
Dz

cosh(βJz
√
qB + βJ0mB)

e−ΞB + cosh(βJz
√
qB + βJ0mB)

, (28)

qA =

∫
Dz

sinh2(βJz
√
qB + βJ0mB)

[e−ΞB + cosh(βJz
√
qB + βJ0mB)]2

, (29)

mA =

∫
Dz

sinh(βJz
√
qB + βJ0mB)

e−ΞB + cosh(βJz
√
qB + βJ0mB)

. (30)

The analogous equations for dB, qB and mB are obtained from the previous one exchanging
A ↔ B. A representative case is shown in Figure 6 where both qA(B) and dA(B) are presented
in the SG and AG phases (see definitions below).

As stated above, new different phases emerge here. At high temperatures (or low µ), when
the orientational degrees of freedom are not interacting (qA = qB = 0), there are two possible or-
derings: a paramagnetic (or quadrupolar) phase, P, with dA = dB 6= 0 and an antiquadrupolar
one, AQ, with dA 6= dB. The name quadrupolar is reminiscent from the spin-1 representation
(τi = Sini) where it labels the ordering of variables τ2

i = ni. At low temperatures (or high µ),
the orientational degrees of freedom become important and different glassy phases show up.
First, there is a spin glass phase (SG) with dA = dB and qA = qB 6= 0. This is the only glassy
phase if the effects of particle repulsion are not very strong (K not too negative). On the other
side, when K is highly negative, besides the SG phase, there is also an antiquadrupolar glass
phase, AG, where the sub-lattice symmetry is broken (dA 6= dB, qA 6= qB).

As in the previous section, when J0 is allowed to be nonzero, the system develops a mag-
netization and additional, ordered phases may appear: when J0 � J at low temperatures (or
high µ) a ferromagnetic phase (F; mA = mB 6= 0, dA = dB, qA = qB 6= 0) is encountered if K is
not too negative, or either a ferrimagnetic phase is entered (I; mA 6= mB, dA 6= dB, qA 6= qB).
Also, with J0 � −J , an anti-ferromagnetic phase (mA = −mB 6= 0) may shows up.

From now on we consider J0 = 0. As we decrease K from a positive value, there is a point,
KAG ' −1.46, where the AG phase first appears, growing inside the previously described SG
phase (see Fig. 7). At a characteristic value, KAQ = −3/2−

√
2 ' −2.91, an antiquadrupolar

phase appears between the paramagnetic, the SG and the AG phases, as depicted in Figure 8.
This value is obtained noticing that there are two points where the P-AQ line intercepts the
AQ-SG line (see Fig. 8), given by

T± =
1

2K

(
K +

1

2
±

√
K2 + 3K +

1

4

)
. (31)

When both are equal, we get KAQ. As soon as the AQ phase appears, the SG phase is divided
in two regions. At even lower values of K (see Fig. 9), the AQ grows, while the left SG phase
shrinks and the right one moves to higher values of µ. This SG phase disappears as K → −∞.
We can also notice that the AG phase is invaded by the AQ as we approach this limit, and
eventually we have only the P and AQ phases, as we could expect since in this limit we have
a lattice gas with repulsive interactions.



N◦8 THE BLUME-EMERY-GRIFFITHS SPIN GLASS MODEL 953

Fig. 6. Fig. 7.

Fig. 6. — Plot of the order parameters q (solid line) and d (dashed line) as a function of the chemical
potential µ for K/J = −3 and a fixed temperature (T = 0.1). Both SG and AG phases are presented.
In particular, the AG solution is the region were both q and d are twofolded. This figure is an horizontal
cross section of Figure 8.

Fig. 7. — Phase diagram for K = −2 showing the phase AG. Notice that at this point there is no AQ
phase yet.

Fig. 8. Fig. 9.

Fig. 8. — Phase diagram for K = −3 where the AQ phase can be seen. This phase appears when the
AG border touches the SG-P transition line for the first time.

Fig. 9. — Phase diagram for K = −5 showing the behavior of the various phases for increasing values
of K (compares with Figs. 7 and 8).

With the same techniques adopted in the previous paragraph, we can analytically locate the
P-AQ continuous transition line reported in Figures 8 and 9:

1

2
β2J2 + βK =

1

d(d− 1)
, (32)
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where d satisfies the equation:

d exp

(
1

1− d

)
= (1− d) exp(βµ). (33)

Analogously, the AQ-AG continuous transition line is given by:

T 2

J2
= dAdB, (34)

where dA and dB satisfy the saddle point equations with qA= qB=0.
Finally, the AG-SG transition line can be found expanding the saddle point equations in the

small quantities qA-qB, dA-dB, representing the staggered order parameter.
The stability of the solutions presented here can be studied by evaluating the eigenvalues

of the matrix of Gaussian fluctuations. The eigenvalues structure is analogous to the one
found in the SK model [30, 31] with non zero magnetic field since here the chemical potential
plays a similar role [14, 32, 33]. However, in this case the eigenvalues may be negative or even
complex [9,12,33]. The numerical study of their behavior [33] shows that the paramagnetic and
antiquadrupolar phases are inside the stability region while both glass phases (AG and SG) are
unstable. The critical line P-AQ, P-SG and AQ-AG are found to be in the stability region, their
location depending on the chemical potential, and should not change when replica symmetry is
broken; while the transition line AG-SG is found to be completely inside the instability region
and its precise location, beyond the aims of this paper, may be found only within the Parisi
scheme of RSB.

3. Conclusions

We have studied the global phase diagram of a spin glass version of the Blume-Emery-Griffiths
model where the bilinear couplings are quenched Gaussian random variables. The particles,
besides the steric effects due to complex molecular structure (represented by the possible spin
orientations), are subject to a potential that may be either attractive or repulsive. These
steric effects that prevent close packing configuration are common in materials like glasses and
poured sand.

This model displays a large variety of interesting critical behaviors. When the particles
interaction is attractive or weakly repulsive the transition between the paramagnetic and spin
glass phase may be either continuous or discontinuous, depending on the value of the chemical
potential; these different behaviors are separated by a tricritical line. For strong repulsive
interaction between particles, new different phases with a sub-lattice structure emerge: the
antiquadrupolar and the antiquadrupolar glassy phase. These phases seems to be separated
by a continuous transition whatever is the value of the chemical potential (at least in the
range of K studied here). When the quenched disorder is not symmetrically distributed, also
a ferromagnetic phase or a ferrimagnetic phase may appear in the phase diagram.

A further transition line where a dynamical instability appears may also be found as hap-
pens in other spin glass models with discontinuous transition. Indeed, many interesting prop-
erties emerge if we consider the dynamical behavior of systems whose equilibrium properties
are described by Hamiltonian (1). For example, the model with diffusive particle dynamics
shows strong glassy behavior characterized by diverging relaxation times, vanishing diffusivity
and breakdown of the Debye-Stokes-Einstein law [15]; while the spin-1 version of the model
with Monte Carlo dynamics displays different aging regimes due to the existence of spin-glass
transitions of different nature. In the region where the spin-glass transition is discontinuous
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the aging behavior is stable against non-relaxational perturbation [35] and quite similar to the
one observed in non-relaxational dynamics of the spherical p-spin glass model [36]. Further-
more when a gravitational term is added to the Hamiltonian (1), strong links appears with
granular media and their complex dynamical behavior as logarithmic compaction [37].
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Appendix A

The 1RSB Solution

In this appendix we present the solution of the Blume-Emery-Griffiths spin-glass model with
one-step of replica symmetry breaking (1RSB). The following relations are the starting point to
get the phase diagram corrections and the dynamical transition line. Without loss of generality
we consider the case J0 = 0 where the magnetization is zero. Following the Parisi scheme, the
n replicas are divided in n/m blocks containing m replicas. Different replicas in the same block
have overlap q1 while those in different blocks have overlap q0. Thus, for the case of attractive
particles interaction (K > 0), the 1RSB free energy reads:

βf1 = −
1

4
β2J2

[
(1−m)q2

1 +mq2
0 − d

2
]
+

1

2
βKd2 − ln 2

−
1

m

∫
Dz0 ln

∫
Dz1 (1 + eΞ1 cosh Ω1)

m (A.1)

where:

Ω1 = βJz0
√
q0 + z1

√
q1 − q0 (A.2)

Ξ1 =
β2J2

2
(d− q1) + β(µ +Kd). (A.3)

The saddle point equations are:

d =

∫
Dz0

(
eΞ1 coshΩ1

1 + eΞ1 coshΩ1

)
(A.4)

q0 =

∫
Dz0

(
eΞ1 sinhΩ1

1 + eΞ1 coshΩ1

)2

(A.5)

q1 =

∫
Dz0

(
eΞ1 sinhΩ1

1 + eΞ1 coshΩ1

)2

(A.6)

(d ≥ q1 ≥ q0) and m satisfies the equation:

1

4
m2β2J2(q2

1 − q
2
0)−m

∫
Dz0 ln(1 + eΞ1 coshΩ1)

+

∫
Dz0 ln

∫
Dz1 (1 + eΞ1 cosh Ω1)

m = 0. (A.7)
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Here the overbar denotes the average:

X =

∫
Dz1 (1 + eΞ1 coshΩ1)

mX∫
Dz1 (1 + eΞ1 coshΩ1)

m
. (A.8)

Following the same procedure, for the case of repulsive particles interaction (K < 0) we obtain:

βf1 = −
1

4
β2J2 [(1−m)q1Aq1B +mq0Aq0B]

−
1

4

[
β2J2 + 2βK

]
dAdB − ln 2

−
1

2m

∑
α=A,B

∫
Dz0 ln

∫
Dz1 A

m
α (z0, z1) (A.9)

where:

Aα(z0, z1) = 1 + eΞ1α cosh(βJz0
√
q0α + βJz1

√
q1α − q0α)

Ξ1α =
β2J2

2
(dα − q1α) + β(µ +Kdα). (A.10)

It is straightforward, but tedious exercise, to obtain the saddle point equations.
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