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Glassy models for granular systems

Jeferson J. Arenzon, Mauro Sellitto

Abstract We briefly review some simple lattice models,
introduced recently to study granular systems based on
the similarities with glassy systems. The basic common
ingredient, partially responsible for the complex behavior
shown, is geometric frustration due to steric hindrance.
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1
Introduction

For many agricultural and industrial processes, proper
handling of granular material pose several fundamental
practical problems that only recently have attracted the
attention of physicists [1-3]. Because of its unusual stat-
ic and flowing properties, the subject offers a challenging
problem from the theoretical point of view, and despite
the huge effort devoted to them, are far from being fully
understood. Therefore, since even the basic mechanisms
responsible for the very unintuitive properties presented
by these systems are still matter of debate, simple lattice
models have been recently introduced in order to clari-
fy these issues as well as to provide a framework where
analytical treatment may be more feasible.

Granulars also provide one of the most interesting
examples of macroscopic out-of-equilibrium behavior and
may serve as an easy setup, experimental test bed. In par-
ticular, since they share several properties with glasses,
some of the properties (like fluctuation-dissipation viola-
tions) may be more accessible to test here. Due to the size
of the grains, thermal energy plays no role and although
the system may be easily trapped in one of the many ex-
isting metastable states, excitations can be achieved by
externally shaking or shearing the system, enabling it
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to wander through the many microscopic configurations
available for fixed macroscopic parameters. Under vibra-
tion, a multitude of fascinating phenomena show up, (see
[1-3] for a review and references), being compaction, aging
and segregation the ones that concern us here most [4].

Slow relaxation under perturbation, signalling complex
cooperative movements of the particles, is readily seen in
compaction experiments [5]. Interestingly, other systems
where the dynamics is ruled by the presence of a multi-
tude of metastable states, like structural glasses and spin
glasses, indeed behave in a similar fashion. For the gran-
ulars, the increase in the bulk density as the system is
either shaken or tapped follows an inverse logarithm law
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with several fit parameters that depend on the vibration
amplitude. This behavior is well supported by experimen-
tal results [5], numerical simulations [6-9], and analytical
approaches [11-16] essentially based on free-volume mod-
els familiar from the physics of glasses. Related to slow
relaxation, these systems present aging properties [17,18].
While one-time quantities asymptotically tend to their
equilibrium values, two-times quantities depend explicitly
both on the observation time and on the time elapsed
since the perturbation was applied: time translation
invariance (TTI) is broken, which is a manifestation of
history dependence, that is, the system ages. Moreover,
fluctuation-dissipation relations no longer hold when in
the out-of-equilibrium regime, although analytical and nu-
merical evidence from the study of some model glasses
point to a generalization of it [19]. Although these prop-
erties have been studied at length for spin and structural
glasses, only recently, as the glassy nature of granular sys-
tems became clear, similar properties start being reported
in such a systems.

Another puzzling behavior presented by granular ma-
terials is size segregation, where a mixture of particles of
different sizes get separated under vibrations, the larger
particles raising to the top. This phenomenum is easily
noticed in several different experimental setups like, for
instance, rotating drums, vertical and horizontal shaking
or simply by pouring the powder onto a pile. Several dis-
tinct mechanisms may play a role (see [20-24] and also
[1-3,25]).

The objective of this paper is briefly review and com-
pare some of the simple lattice models recently introduced
in the study of powders, along with their glassy counter-
parts, where the system is not externally driven by grav-
ity. Several equilibrium and out-of-equilibrium properties

p(t) = Poo —
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are described, highlighting both the similarities and dif-
ferences between thesem systems.

2
Lattice models for glassy and granular systems

Although several simple models have been proposed to
explain logarithmic compaction and segregation, we will
review and compare only some lattice models, based on
the geometric frustration concept, that make the connec-
tion with some features of the glassy physics. In 2d, the
system is defined on a 45°-tilted lattice: there is no move-
ments along the horizontal, particles can only go up or
down. In 3d, this can be easily achieved by considering a
bee lattice. We may write these models in the form

Ho==TY fi(Si,Si)ning — g > _mih; (2)
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where n, = 0,1 (i =1...N) are local densities or site oc-
cupations and there is a frustration term f;; that depends
on the internal degrees of freedom (e.g. rotational ones).
Although molecules in glass forming liquids or particles in
granular systems may assume several spatial orientations,
here we take the simpler cases of either no such degrees of
freedom (constant f;;) or only two possibilities, S; = %1.
The models that will be considered are the Frustrated
Ising Lattice Gas (FILG) [30,31] with

fij = €885 — 1 (3)

where ¢;; = £1 are quenched random variables, the Tetris
[7] with

fis = 5 [558; — eis(S1 + 5) +1] (1

where, differently from the FILG, the bonds ¢;; are not
random, but 41 along one diagonal and —1 along the
other, and the Kob-Andersen [9,27] one with

fij=0. (5)
While the FILG is purely Hamiltonian, the Tetris model
has a further kinetic rule for updating the internal degrees
of freedom depending on the local densities. The Kob-An-
dersen, on the other hand, is purely kinetic. In any case,
the physical basis for both the kinetic constraints and the
frustration terms is the usually complex spatial structure
of the particles (either grains or molecules) that is in part
responsible for the geometric constraints, imposed by the
neighbors, on their translational and rotational dynamics.

2.1
The Frustrated Ising Lattice Gas

Without gravity, both the equilibrium [33,34] and the out-
of-equilibrium [35-37] properties have been studied for
T =1and J = 10, corresponding to the Frustrated Perco-
lation limit (where J — o00) [30,31]. In this limit, in order
to minimize #, Egs. (2-3), either the spins should satisfy
the bond €;; or at least one of the sites ¢ or j must be
empty. Moreover, the condition of large J may be relaxed
or a dynamics can be implemented for the bonds ¢;; [32].

In the low density regime the behavior is liquid like,
time correlation functions decay exponentially, equilibra-
tion is quickly achieved and the particles mean squared

displacement grows linearly with time, a simple diffusion
scenario since particles hardly feel any constraint in their
mobility. At a higher density, there is a percolation transi-
tion, that manifests dynamically as a first, fast exponential
relaxation at short times and as a slow, stretched exponen-
tial relaxation at longer ones. At a density p. ~ 0.67, the
relaxation times diverge and the diffusion constant goes to
zero, transition that corresponds to the dynamical one in
mean field p-spin or Potts glasses or the ideal glass tran-
sition in the mode coupling theory. Also, the spin glass
susceptibility, associated with the internal degrees of free-
dom of occupied sites, diverges at the same point where a
glass transition takes place [33,34], signalling a thermody-
namic spin glass transition associated with the frozen-in
of the internal degrees of freedom.

A characteristic feature of out of equilibrium glassy
systems is slow aging dynamics [17,18], present in the
FILG both with [42] and without gravity [35]. The decay
of autocorrelations is similar to that observed in molecular
dynamics simulations of Lennard-Jones glasses. A typical
aging scenario is present signalling the slowing down of the
dynamics as the waiting time from the application of the
perturbation grows. For long waiting times, the correla-
tion presents a rather fast relaxation to a plateau in which
the system evolves in quasi-equilibrium: the dynamics is
stationary and the fluctuation-dissipation relations hold.
The plateau separates two time scales typical of glassy
systems: a [ (fast) relaxation for short times and an «
(slow) relaxation at longer times, corresponding respec-
tively to the fast movements of the particles inside the
dynamical cages and the large scale, cooperative process
that takes much more time in order to rearrange the cages.
Moreover, in this long time regime, the system falls out
of equilibrium, the correlations decay to zero asymptot-
ically and time translational invariance (TTI) no longer
holds with the corresponding violation of the fluctuation-
dissipation theorem (FDT). An analogous aging scenario
has been found in presence of gravity [42], although the
scaling of the correlation functions is somewhat different.
In the out-of-equilibrium regime, where FDT is violated,
there are, on the other hand, evidences from simulation
and mean field calculations, that a generalized relation
between two times correlation functions C(¢,t,,) and the
associated responses R(t,t,,) still holds [17,18], involving
a “Fluctuation-Dissipation Ratio” (FDR), connected to
an effective temperature. Interestingly, the form of the
FDT violation, shown by the FILG without gravity, is
exactly the one predicted in these mean field models con-
sidered as good models for glasses, i.e. a constant FDR,
signalling that this model presents two very separated
time scales [36]. Moreover, this may be the first realiza-
tion of a glassy phase characterized by one step of replica
symmetry breaking (in the Parisi scheme) in a finite di-
mensional model. When gravity is included, the form of
the FDT violation is much more complicated, as will be
shown in the next session for the Tetris model, and re-
ported to be similar in the FILG [45].

Another similarity between the glassy and granular
cases appears when a sort of cooling experiments are per-
formed. In the case of glasses, by decreasing the temper-
ature at a given rate, below the melting point, liquids
may either crystallize or enter a supercooled regime. As



the glass transition temperature T} is approached, molec-
ular motion gets slower and slower and relaxation times
increase by several orders of magnitude and for all practi-
cal purposes the system remains out of equilibrium. This
transition temperature 7y is rate dependent and is still
matter of debate if there is an underlying thermodynam-
ical transition. This scenario is exactly what happens in
the FILG [37] when changing the chemical potential at
different rates: for each compressing rate, the system goes
out of equilibrium at different points. With gravity, by
varying the vibration amplitude, the system presents re-
versible-irreversible cycles [38]: after pouring the particles
and performing low amplitude vibrations, the density in-
creases as the system escapes from the initial, low density
metastable states. Further increasing the amplitude, at
a certain point, decompactification starts and the densi-
ty diminishes after passing the maximum. By reverting
the cycle, decreasing the amplitude, the curve follows the
previous one up to a given point, departing from it and
forming the reversible part of the cycle. The actual paths
are rate dependent: the system goes out of equilibrium at
different points for different rates. This sequence of paths
is quite well reproduced by the FILG model [42].

At a mean field level, equilibrium properties have been
studied in closely related models with [39] and without
gravity [40,41]. When all sites are occupied, the behavior
corresponds to the Sherrington-Kirkpatrick model, with
a continuous spin glass transition. Upon decreasing the
density, one reaches a tricritical point, below which the
transition is first order. In this region, analogously to
other first order transition models like the p-spin and
the Potts glass, above the critical temperature there is
a dynamical transition where metastable states first ap-
pear. We still do not know in what extension this scenario
remains valid in finite dimensions, but the results from
the study of the violation of the fluctuation-dissipation
theorem indicates [36] a high similarity between the 3d
model and mean-field models with a discontinuous tran-
sition (and one step of replica symmetry breaking). By
including gravity, depending on the amount of vibration,
the system suffers a fluidization transition: the upper part
of the system may be in a liquid-like phase while the bot-
tom one is in solid-like one. As the vibration increases,
the layer separating both regimes approaches the bottom
of the system and above a critical temperature, all layers
are liquid-like. Although interesting, the mean field ver-
sion of the model has still to be tested to whether or not
it presents slow compaction (since the number of connec-
tions to satisfy increases in the mean field limit, we do
expect slow behavior, not necessarily the same as in finite
dimensions).

2.2
The Tetris model

In analogy with the computer game “Tetris”, where blocks
of a myriad of forms fall and must be arranged in such a
way to avoid vacancies, here, non-overlapping, elongated
grains try to arrange in an alternate (anti-ferromagnet-
ic) ordering [7,43]. The model, apart being described by
Egs. (2-4), has a kinetic constraint for possible changes
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of orientation of particles, depending on local densities: in
not too dense regions, particles may rotate.

Although the compaction again follows the inverse
logarithm law, Eq. (1), there are some differences in the
underlying mechanism when compared with the FILG [44],
the growth of thelargest cluster being different in both cases.

Response functions, and the relation with the char-
acteristic fluctuations (the so called “Fluctuation-Dis-
sipation Relation”) have been extensively studied in the
Tetris model [45,8]. Two replicas of the system are com-
pared during the dynamical evolution where, at a time t,,
the vibration amplitude of one of them is slightly changed.
The difference in the height of the center of mass in
both replicas, Ah(t,t,,), is related to the mean square dis-
placement B(t,t,) = ([h(t) — h(ty)]?) in the unperturbed
system. By being externally driven, the system presents
spatial heterogeneities (for instance, between bulk and in-
terface) that are different from the FILG without gravity
and should be carefully taken into account, as shown by
Barrat and Loreto [8]. Responses may be either positive
or negative, depending on the degree of compaction of the
perturbed system when compared with the unperturbed
one. The response has an initial positive branch and, for
larger times (that depends on both the waiting time and
the vibration amplitude), a negative one. The positive part
gets larger as t,, increases, signalling that the system his-
tory and how it is driven are important ingredients when
trying to define an effective temperature based on gener-
alized fluctuation-dissipation relations.

Grains of different forms may also be introduced, gen-
eralizing the model [43,8], to test for segregation. The
particle separation is directly related to the presence of
different mobilities, allowing for the sifting of the small
particles. An analogous mechanism for segregation is also
present in the Kob-Andersen model, as will be shown in
the next section.

2.3
The Kob-Andersen model

Kob and Andersen [27] used a kinetically constrained lat-
tice-gas made of non interacting, non overlapping parti-
cles to model the properties of supercooled liquids. In this
way, the model is purely kinetic (# = 0), the rule mim-
icking the effect of steric hindrance present in real glasses:
one randomly chosen particle may hop to an empty neigh-
boring site if before and after the movement the particle
has less than v other nearest neighbor particles. By con-
struction, every initial state is an equilibrium state of the
system and no further equilibration is needed (TTI and
FDT relations are obbeyied). Nevertheless, by letting the
system exchange particles with a reservoir (for example,
in the outermost layers), it is possible (similarly to a com-
pression) to observe the off equilibrium dynamics of the
system [28,29]. In this way, the main features of glassy
physics are well reproduced by this very simple model.
In particular, in the equilibrium regime, as the density
increases, particles movements become more constrained
and are only allowed after a large, cooperative rearrange-
ment of the neighboring particles. The associated cooper-
ative length increases with the system density and at a
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threshold density, p. ~ 0.88, the diffusion coefficient goes
to zero, signalling a glass transition. This effect is
purely dynamical since the lack of interaction implies a
trivial thermodynamics: no thermodynamical transition
exists for this model.

The Kob-Andersen can model granular systems by tak-
ing into account gravity [9,10], Egs. (2-5) and v = 5.
From the static point of view, there is only a lattice-gas
of non-interacting particles in a gravity field and, again,
the thermodynamics is trivial and it is only because of the
kinetic constraint that there is an interesting behavior, in
accordance with the basic granular phenomenology. In-
deed, gravity and weak vibrations combined produce, as
in previous models, a slow increase in the packing den-
sity of the system, according to the inverse logarithmic
law, Eq. (1). However, for strong vibrations, although the
above law still provides a reasonable description of the
compaction process for the whole time window, a modi-
fied version (but still logarithmic) or a power law (for large
times) also provide a consistent, sometimes better, fit [10].
From these fits, the asymptotic packing density seems to
depend on the vibration amplitude. For very high ampli-
tudes, the decompactification achieved by the system is
enough to decrease the density such that the constraints
are no longer important (the condition on the number of
neighbors is hardly needed). In this regime, the behav-
ior is in accordance with the thermodynamical picture:
the packing density is a decreasing function of the vibra-
tion amplitude. Lowering the vibration, the constraints
become important and there is a dynamical jamming tran-
sition. In the other extreme, for small amplitude vibra-
tions, the system is trapped in one of the many low density
metastable states, being unable to explore denser neighbor
configurations, and any further increase in the vibration
helps the system to increase its density. In between, there
is an optimal value of the vibration amplitude for which
the asymptotic density is maximum.

Moreover, a polydisperse system of particles, with dif-
ferent degrees of kinetic constraints (yet identical mass-
es), can be considered in order to show that segregation
phenomena is present in the Kob-Andersen model. Both
components differ only in the value of v in the kinetic
constraint: one type of particle is constrained while the
other one is not. Starting from a random homogeneous
distribution of particles, under vibration, the constrained
(large) particles rise to the interface region, while the un-
constrained (small) ones sift to the bottom. The mecha-
nism is analogous to the one present in the Tetris mod-
el [43]: small particles, because of their greater mobility,
easily fill the gaps beneath large ones.

Although the model is still in early stages of research,
in analogy with the g = 0 version, we expect that other
properties (e.g., response functions and the corresponding
correlation functions, reversible-irreversible cycles, etc)
will be well reproduced.

3
Conclusions

We discussed simple lattice models whose common key
ingredient is a free-volume constraint, implemented in

several ways, to mimic geometric frustration effects. The
models discussed here may be divided in three categories:
some are fully kinetical, some are purely Hamiltonian
while others are a mixing of both. Although the objective
is not to provide a realistic, quantitative description, the
basic granular phenomenology is quite well reproduced by
these models, showing the robustness of the phenomena
in spite of details of the microscopic models. Indeed, from
the experimental point of view, granular systems present
a rather universal behavior, irrespective of the details of
the grains. Moreover, these models, without gravity, are
quite successful in describing glassy properties, clarifying
the relation among these two systems, apparently so
different. In particular, for the Kob-Andersen model, this
similarity is obtained without introducing any form of
quenched randomness neither in the energetic interaction
nor in the shape of particles.

In a nutshell, simple lattice models are able to capture
the main dynamical properties of systems where geometric
frustration is a dominant mechanism responsible for slow
relaxation, unifying, in this way, rather different systems,
granular and glassy.
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