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Replica mean field theory for granular media
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Abstract

An infinite range spin-glass-like model for granular systems is introduced and studied through
the replica mean field formalism. Equilibrium properties under vibration and gravity are ob-
tained, as well as the phase diagram showing the dependence on gravity, density and vibration.
© 1998 Elsevier Science B.V. All rights reserved.

Besides industrial applications, the unusual static and flow properties of granular
materials [1,2] offer a challenging problem from the theoretical point of view, and
despite the enormous effort that has been devoted in recent years, they are far from
being fully understood. At a fixed macroscopic density, a granular system may be in
a large number of different microscopic states, that has lead to the introduction of a
statistical mechanics description of powders [3,4], replacing the energy by the volume
and the temperature by the compactivity. On the other hand, in analogy with the
thermal motion in liquids and gases, a granular temperature has also been introduced,
which depends on the motions of the particles, in contrast with the compactivity that
characterizes a static system.

These systems, composed of many discrete macroscopic particles, present slow re-
laxations under perturbations (vibrations) that resemble the ones found in frustrated
systems like glasses and spin glasses. The analogy among them has been suggested
some time ago [1,2] and stressed recently along with the role of geometric frustration
[5]. For glass-forming liquids, a simple lattice model has been introduced [6,7] that
explicitly takes into account these effects and as the Ising model makes the connection
between simple fluids and magnets, this model bridges complex fluids (glasses) and
complex magnets (spin glasses). An infinite range version [8,9] has also been studied
in the framework of replica theory, yielding a very rich phase diagram. In order to
apply this model for granular systems, Nicodemi et al. [10,11] introduced the effects

* Corresponding author. E-mail: arenzon@if.ufrgs.br.

0378-4371/98/$19.00 Copyright © 1998 Elsevier Science B.V. All rights reserved.
PII: S0378-4371(98)00149-6



304 J.J. Arenzon/ Physica A 257 (1998) 303-306

of gravity and studied this simple frustrated Ising lattice gas (FILG) in 2D follow-
ing a diffusion-like Monte-Carlo dynamics while applying a sequence of taps. Among
several interesting properties, the system displays a logarithmic relaxation behaviour,
also found in real experiments, as well as a localization transition, signalled by a zero
diffusion constant, in which the particles get trapped in local cages. This transition
point seems to correspond to the Reynolds (or dilatancy) transition observed in real
systems.

Here we introduce a variant of this model [12] considering L layers of N sites, each
site in the /th layer being connected with all sites in the /—1 and /41 layers, but not
with sites in the same layer. Each site may be occupied by a particle (n; =0, 1) having
an internal degree of freedom (S; = £ 1) that feels the steric effects set as quenched,
gaussian distributed lattice bonds with J; =0 and J_j =J/N. Also, each layer has its
own chemical potential satisfying /.1 > iy (counting from top to bottom) that accounts
for the effect of gravity and u, = g/ in order to have a constant force. Thus, we consider
the following Hamiltonian:

L—1 L—1
A== D SIS A KN =Y e Y M
/=1

i<j /=1 i

The parameter K may tune the repulsive/attractive interaction between particles [8,9]
but here we do not consider those effects (K =—1) [6-9].

In evaluating the free energy, only states with a given density p are taken into
account. Assuming replica symmetry (J =1):
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The order parameters are g/, = (S“n* S*n"’) and d/;= (n*") while py accounts for
the constraint p=L"'>", d, and
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There is a critical temperature where all ¢, go to zero. When g=0 (no gravity),
dy=p (V/) and T, = pT5K where T5K is the critical temperature of the L-layered SK
model [12]. On the other limit, when g — oo (strong gravity), in analogy with the
layered SK model, the critical temperature is related to the smallest positive root x*
of a given polynomial, 7. = 1/v/2x*, depending on the density p. For 0<p<1/L, we
have 7.=0 because all particles occupy the lowest layer and do not interact. For
1/L<p<2/L, some sites occupy the second lowest layer and the critical temperature
is obtained with the root of P,(x). In general, for (n — 1)/L<p<n/L, the relevant
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Fig. 1. Phase diagram T versus p for L=3 and g=0 (straight line), 1 and oo, showing the disordered
phase (P, g, =0,VY/) and a spin-glass-like phase (SG, g, #0).
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Fig. 2. (a) Height lifting as a function of temperature for L=3, g=1 (dashed) and g=2 (solid) for
p=0.5 and 0.7. (b) The density profile for L=10, g=1 and p=0.3 for several values of temperature:
0.1,0.5,1,1.5,2,2.5 and 3.

polynomial is P,(x). These polynomials are obtained recursively by

Proi(x) B
Or(pL — L+ 1)+ (1 —d/1)

with Py(x)=P(x)=1. As L — oo, T, — 1 for all densities. Fig. 1, for L =3, shows the
critical temperature for both extreme cases, g =0 and g — co and for an intermediate
one, g=1.

As the granular temperature increases, there is an elevation of the center of mass
of the system [13], given by hfy, =(pL)"'>",/d, and this is a function of both
temperature and gravity. We further rescale it to have a function in the interval
(0 being the bottom) by hcy = (L — h,)/(L — 1). Fig. 2a illustrates the height lifting
for L =3. The density profile, that is, the density as a function of the system height,
has been measured both in real experiments [14] as well as in simulations. Experi-
mentally, as the steady state is achieved, independently of the up and down motion

Pi(x)= P 5(x), 4
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of the heap, the density profile is always preserved. In Fig. 2b this profile is shown
for ten layers under g =1 and filled up to p=0.3. Notice that the curves get steeper
as the vibration diminishes. It is important to stress that, in analogy with the FILG
[8,9], there are two regimes of densities: one is the L-layered SK regime where the
particles settle in the lowest possible layers disregarding the geometric effects and the
most interesting regime where the steric effects become important and even at 7 =0
there are still vacant sites.

In conclusion, we introduced an infinite range version of a frustrated lattice gas
model [5,10,11] for granular systems and applied, for the first time, the replica for-
malism to these systems. In this mean field version, we are able to study stationary
properties, obtaining the vibration, density and gravity-dependent phase digram as well
as information on quantities like the density profile and height lifting.
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