
Physica A 257 (1998) 303–306

Replica mean �eld theory for granular media
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Abstract

An in�nite range spin-glass-like model for granular systems is introduced and studied through
the replica mean �eld formalism. Equilibrium properties under vibration and gravity are ob-
tained, as well as the phase diagram showing the dependence on gravity, density and vibration.
c© 1998 Elsevier Science B.V. All rights reserved.

Besides industrial applications, the unusual static and 
ow properties of granular
materials [1,2] o�er a challenging problem from the theoretical point of view, and
despite the enormous e�ort that has been devoted in recent years, they are far from
being fully understood. At a �xed macroscopic density, a granular system may be in
a large number of di�erent microscopic states, that has lead to the introduction of a
statistical mechanics description of powders [3,4], replacing the energy by the volume
and the temperature by the compactivity. On the other hand, in analogy with the
thermal motion in liquids and gases, a granular temperature has also been introduced,
which depends on the motions of the particles, in contrast with the compactivity that
characterizes a static system.
These systems, composed of many discrete macroscopic particles, present slow re-

laxations under perturbations (vibrations) that resemble the ones found in frustrated
systems like glasses and spin glasses. The analogy among them has been suggested
some time ago [1,2] and stressed recently along with the role of geometric frustration
[5]. For glass-forming liquids, a simple lattice model has been introduced [6,7] that
explicitly takes into account these e�ects and as the Ising model makes the connection
between simple 
uids and magnets, this model bridges complex 
uids (glasses) and
complex magnets (spin glasses). An in�nite range version [8,9] has also been studied
in the framework of replica theory, yielding a very rich phase diagram. In order to
apply this model for granular systems, Nicodemi et al. [10,11] introduced the e�ects
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of gravity and studied this simple frustrated Ising lattice gas (FILG) in 2D follow-
ing a di�usion-like Monte-Carlo dynamics while applying a sequence of taps. Among
several interesting properties, the system displays a logarithmic relaxation behaviour,
also found in real experiments, as well as a localization transition, signalled by a zero
di�usion constant, in which the particles get trapped in local cages. This transition
point seems to correspond to the Reynolds (or dilatancy) transition observed in real
systems.
Here we introduce a variant of this model [12] considering L layers of N sites, each

site in the ‘th layer being connected with all sites in the ‘−1 and ‘+1 layers, but not
with sites in the same layer. Each site may be occupied by a particle (ni=0; 1) having
an internal degree of freedom (Si= ± 1) that feels the steric e�ects set as quenched,
gaussian distributed lattice bonds with Jij =0 and J 2ij = J=N . Also, each layer has its
own chemical potential satisfying �‘+1¿�‘ (counting from top to bottom) that accounts
for the e�ect of gravity and �‘= g‘ in order to have a constant force. Thus, we consider
the following Hamiltonian:
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The parameter K may tune the repulsive=attractive interaction between particles [8,9]
but here we do not consider those e�ects (K =−1) [6–9].
In evaluating the free energy, only states with a given density � are taken into

account. Assuming replica symmetry (J =1):
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There is a critical temperature where all q‘ go to zero. When g=0 (no gravity),
d‘= � (∀‘) and Tc= �TSKc where TSKc is the critical temperature of the L-layered SK
model [12]. On the other limit, when g→∞ (strong gravity), in analogy with the
layered SK model, the critical temperature is related to the smallest positive root x∗

of a given polynomial, Tc=1=
√
2x∗, depending on the density �. For 06�61=L, we

have Tc=0 because all particles occupy the lowest layer and do not interact. For
1=L6�62=L, some sites occupy the second lowest layer and the critical temperature
is obtained with the root of P2(x). In general, for (n − 1)=L6�6n=L, the relevant
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Fig. 1. Phase diagram T versus � for L=3 and g=0 (straight line), 1 and ∞, showing the disordered
phase (P, q‘ =0;∀‘) and a spin-glass-like phase (SG, q‘ 6=0).

Fig. 2. (a) Height lifting as a function of temperature for L=3, g=1 (dashed) and g=2 (solid) for
�=0:5 and 0.7. (b) The density pro�le for L=10, g=1 and �=0:3 for several values of temperature:
0:1; 0:5; 1; 1:5; 2; 2:5 and 3.

polynomial is Pn(x). These polynomials are obtained recursively by

P‘(x)=
P‘−1(x)

�‘L(�L− L+ 1)2 + (1− �‘L) − x
2P‘−2(x) ; (4)

with P0(x)=P1(x)= 1. As L→∞, Tc→ 1 for all densities. Fig. 1, for L=3, shows the
critical temperature for both extreme cases, g=0 and g→∞ and for an intermediate
one, g=1.
As the granular temperature increases, there is an elevation of the center of mass

of the system [13], given by h′CM =(�L)
−1∑

‘ ‘d‘ and this is a function of both
temperature and gravity. We further rescale it to have a function in the interval
(0 being the bottom) by hCM =(L− h′CM )=(L− 1). Fig. 2a illustrates the height lifting
for L=3. The density pro�le, that is, the density as a function of the system height,
has been measured both in real experiments [14] as well as in simulations. Experi-
mentally, as the steady state is achieved, independently of the up and down motion
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of the heap, the density pro�le is always preserved. In Fig. 2b this pro�le is shown
for ten layers under g=1 and �lled up to �=0:3. Notice that the curves get steeper
as the vibration diminishes. It is important to stress that, in analogy with the FILG
[8,9], there are two regimes of densities: one is the L-layered SK regime where the
particles settle in the lowest possible layers disregarding the geometric e�ects and the
most interesting regime where the steric e�ects become important and even at T =0
there are still vacant sites.
In conclusion, we introduced an in�nite range version of a frustrated lattice gas

model [5,10,11] for granular systems and applied, for the �rst time, the replica for-
malism to these systems. In this mean �eld version, we are able to study stationary
properties, obtaining the vibration, density and gravity-dependent phase digram as well
as information on quantities like the density pro�le and height lifting.
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